<u>Séquence 10</u>: Calcul littéral - Distributivité

À la fin de cette Séquence 10, je dois connaître	Pour r	entraîner :		
• La définition d'« expression littérale » et de « ve	riable» Cours	partie A		
• Les conventions d'écriture d'une expression litté	rale Cours	partie A		
· Les définitions de «simplifier» et «développer»	Cours	Cours parties A et B		
Je dois savoir faire	Pour 1	Pour m'entraîner:		
	#	##	444	
 Simplifier et réduire une expression 	n° 1,	n° 3, 13		
Utiliser la simple distributivité pour développe	n°4, 5, 6	14 n°7, 15, 16		
• Utiliser la double distributivité pour développer	. n° 8,	n° 10, 17		
• Traduire un programme de calcul par une exp	ression littérale		n° 11, 18	
· Résoudre des problèmes faisant appel au calcul	littéral	n° 12, 19		

A)	Simplifier	ou	réduire	une	expression

Définitions:		·	
•			
•			
Exemple:			
Propriété :			
	_		
A = 2 × 4	er les expression ci-dessous: $B = -3 \times x + 2 \times (5 \times x + 1)$	C = 7xxxy+8x6xxxx	
A =	B =	6 -	
		C =	
<u>Définition</u> :			
10	•		

Exemples: réduire les expressions ci-dessous:

$$D = 10x - 6x^{2} - 7 + 3x - 5x^{2} - 3$$

$$E = 3y + 5x - 2 + 4x^{2} + 5 - x + 2y + y$$

$$E = 3y + 5x - 2 + 4x^{2} + 5 - x + 2y + y$$

$$E = 3y + 5x - 2 + 4x^{2} + 5 - x + 2y + y$$

$$E = 3y + 5x - 2 + 4x^{2} + 5 - x + 2y + y$$

$$E = 3y + 5x - 2 + 4x^{2} + 5 - x + 2y + y$$

$$E = 3y + 5x - 2 + 4x^{2} + 5 - x + 2y + y$$

Remarque: En général, pour met les termes de plus haut degré ($4\infty^2$ par exemple dans E) en premier, et on termine par les constantes (3 par exemple dans E)

Exemples: simplifier puis réduire les expressions suivantes:

$$F = 5 \times \alpha + 3 \times 2 \times \alpha - 7 \times (6 \times \alpha - 3 \times y)$$

$$F = 0$$

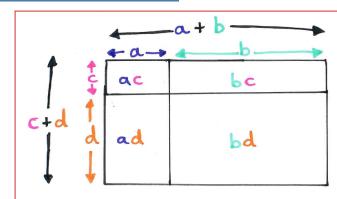
B) Développer un produit avec la simple distributivité

Méthode de la distribution simple:

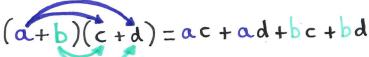
Exemples: développer puis réduire les expressions ci-dessous:

$$\mathcal{H} = 4(x + y)$$

$$\int_{0}^{\pi} = 2(3y + 5)$$


$$K = \infty(3\infty - 9)$$

$$J = 7(\infty + 3)$$


$$J = \dots$$

C) Développer un produit avec la double distributivité

Méthode de la double distributivité:

Aire =
$$(a+b)(c+d)$$

Exemples: développer puis réduire les expressions ci-dessous:

$$\mathcal{L} = (x + 3)(2 + y)$$

$$\mathcal{M} = (2x + 3)(x + 8)$$

$$\mathcal{N} = (\infty + 5)(\infty - 2)$$

$$\frac{\partial V}{\partial t} = \frac{1}{2} \left(\frac{2x}{x} + \frac{3}{x} + \frac{8}{x} \right)$$

Cas particulier:

Démonstration:

Exemples:

$$(x + 3)(x - 3) = \dots$$

$$(x + 3)(x - 3) = \dots (2x + y)(2x - y) = \dots (1 - x)(1 + x) = \dots$$

$$(1 - k)(1 + k) = \dots$$