<u>Séquence</u> 13: Périmètre et aire

À la fin de cette Séquence 13, je dois connaître	Pour m'entraîner:				
• La définition du périmètre d'une figure	- Cours partie A				
Les formules de calcul du périmètre des polygones et du cercle					
• La définition de l'aire d'une figure	Cours partie B				
Les formules de calcul de l'aire des polygones et du disque	Tawa Jawa &				
• La valeur approchée du nombre π au centième $(3,14)$	Cours partie A				
Je dois savoir faire	Pour m'entraîner:				
δ	#	##	444		
Calculer le périmètre d'un polygone	n°1, 2, 11	n°3	n°12		
Calculer le périmètre d'un cercle	n°4, 13	n°5, 14	n°15		
Convertir les unités d'aire	n°6, 16				
Calculer l'aire d'un polygone	n°7, 17, 18	n°8	n°19		
Calculer l'aire d'un cercle	n°9	n°20	n°10, 21		

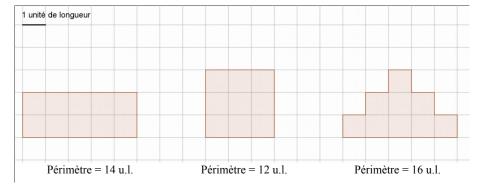
A) Périmètre

<u>Définition</u>: Le périmètre d'une figure est la longueur de son contour.

Concrètement, mesurer le périmètre d'une figure, cela revient à trouver combien mesure la ligne qui borde

cette figure.

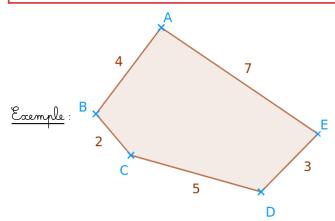
Exemples:



1. <u>Périmètre d'un polygone</u>

Rappel: Un polygone est une ligne brisée fermée (voir Séquence 11!).

<u>Propriété</u>: Le périmètre d'un polygone s'obtient en additionnant la longueur de tous ses côtés.

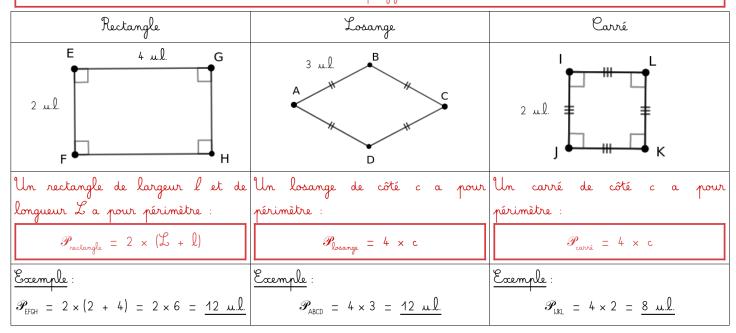


Le périmètre du pentagone ci-contre est de 21 unités de longueur. En effet :

$$\mathcal{P}_{ABCDE}$$
 = AB + BC + CD + DE + EA
= 4 + 2 + 5 + 3 + 7
= 21

Remarque : On utilise souvent la lettre « P » arrondie pour désigner le périmètre. Ainsi, \mathscr{P}_{ABCDE} désigne « le périmètre de la figure ABCDE ».

Périmètres des polygones usuels

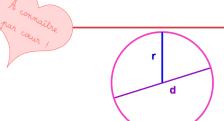


Remarque: « u.l. » = unités de longueur, s'utilise comme « cm » par exemple.

2. Périmètre d'un cercle

Propriété:

- La longueur ${\mathscr P}$ d'un cercle de diamètre ${\mathbb D}$ est : ${\mathscr P}$ = π \times ${\mathbb D}$
- La longueur ${\cal P}$ d'un cercle de rayon r est : ${\cal P}$ = π × 2 × r



Remarque: La formule avec le rayon découle directement de celle avec le diamètre, en effet:

Remarque importante: Le nombre Pi, noté π n'est pas un nombre décimal (il a une infinité de chiffres après la virgule). On prend souvent comme valeur approchée : $\pi \approx 3,14$

Exemples:

- Calculer le périmètre d'un cercle de <u>diamètre 4 m</u>:
 - ° $\mathscr{P}=\pi\times\mathbb{D}=\pi\times4$ m \to C'est la valeur exacte du périmètre de ce cercle.
 - ° On peut trouver une valeur approchée grâce à la calculatrice (voir Annexe : « π sur la calculatrice »), ou en utilisant le fait que π ≈ 3,14 :

$$\mathcal{P} = \pi \times 4 \text{ m} \approx 3,14 \times 4 \text{ m} \approx 12,56 \text{ m}.$$

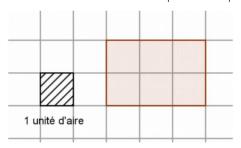
- Calculer le périmètre d'un cercle de rayon 5 cm:
 - ° $\mathscr{P} = \pi \times 2 \times r = \pi \times 2 \times 5$ cm = $\pi \times 10$ cm → C' est la valeur exacte du périmètre.
 - ° On peut trouver une valeur approchée grâce à la calculatrice (voir Annexe : « π sur la calculatrice »), ou en utilisant le fait que π ≈ 3,14 :

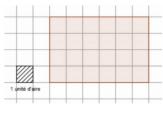
$$\mathcal{P} = \pi \times 10 \text{ cm} \approx 3,14 \times 10 \text{ cm} \approx 31,4 \text{ m}.$$

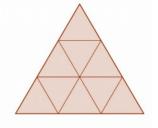
B) Aire

<u>Définition</u> : L'aire d'une figure est la mesure de sa surface intérieure. Elle représente la « taille » de l'intérieur de la figure.

Après avoir choisi une unité d'aire, on compte combien de fois cette unité d'aire est contenue dans la figure, ou on donne un encadrement par exemple:







Aire = 6 unités d'aire

Aire = 6 u.a.

Aire = 9 u.a.

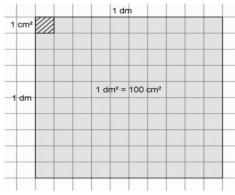
1. <u>Unités d'aire</u>

<u>Définition</u>: L'unité de mesure des aires est le m^2 (« mètre-carré »).

Exemples:

- 1 m² est l'aire d'un carré de 1 m de côté.
- 1 dm² est l'aire d'un carré de 1 dm de côté.

Pour changer d'unité d'aire, on utilise un tableau de conversion particulier :



k.	m²	h	m²	da	m²	m²		dm²		cm ²		mm²	
kilo-		hec	to-	déca-		mètres-carré		déci-		centi-		milli-	
			ha		a								
	1	0	0										
			1	0	0	0	0						
							0,	5	0				
		2	1	0	0	0	0						
								5	8,	4	0	0	0
					0,	0	3,	2					
							0,	0	0	0	6,	8	9

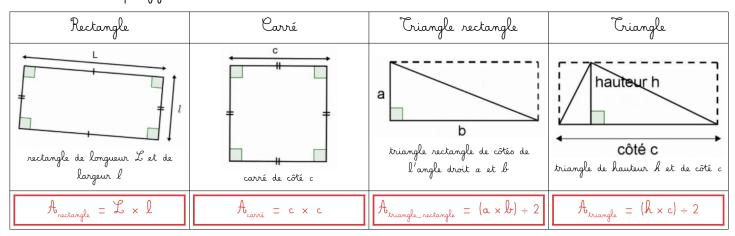
<u>Remarque</u>: Pour mesurer la superficie d'un terrain, on utilise souvent l'hectare (ha) ou l'are (a).

$$1 \text{ are } = 1 \text{ a} = 1 \text{ dam}^2$$

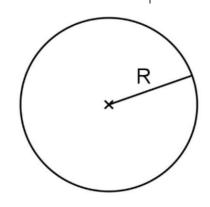
Exemples:

1 km² = 100 hm²	$0,5 \text{ m}^2 = 50 \text{ dm}^2$	$3,2 \text{ m}^2 = 0,032 \text{ dam}^2 = 0,032 \text{ a}$					
1 ha = 10 000 m²	58,4 dm² = 584 000 mm²	21 ha = 2 100 a = 21 000 m²	$6,89 \text{ cm}^2 = 0,000689 \text{ m}^2$				

2. <u>Aire d'un polygone</u>



3. Aire d'un disque



Propriété: L'aire d'un disque de rayon
$$\mathbb R$$
 vaut: $\mathbb A_{_{\mathrm{disque}}} = \pi imes \mathbb R imes \mathbb R$

$\underline{\text{Remarques}}:$

- On a toujours $\pi \approx 3,14$
- On parle ici de «disque» et non de «cercle» car le cercle ne désigne que la frontière extérieure du disque, qui lui est plein.

Exemple:

Calculer l'aire d'un disque de <u>diamètre 6 cm</u>:

- Le diamètre est le double du rayon. Donc si diamètre = 6 cm, alors \mathbb{R} = 6 \div 2 = 3 cm.
- A = π × \Re × \Re = π × 3 × 3 = π × 9 cm². \rightarrow C'est la valeur exacte de l'aire.
- On peut trouver une valeur approchée grâce à la calculatrice (voir Annexe : « π sur la calculatrice»), ou en utilisant le fait que π \approx 3,14 :

$$A = \pi \times 9 \text{ cm}^2 \approx 3,14 \times 9 \text{ cm} \approx 28,26 \text{ cm}^2$$