Séquence 3 : Puissances d'un nombre

Ø ♥ Ø OBJECTIFS : ♥ Ø ♥

À la fin de cette Séquence 3, je dois connaître	Pour m'entraîner :	
Les définitions des puissances d'exposant positif ET négatif.	Cours partie A et C	
La forme d'un nombre en écriture scientifique.	Cours partie B	
Les propriétés de calcul des puissances.	Cours partie C	

Je dois savoir faire	Pour m'entraîner :		
	☆	**	***
Calculer une puissance de 10 (positive ou négative).	n°1, 2	n°3	n°4
Reconnaître un nombre en écriture scientifique.	n°5		
Mettre un nombre en écriture scientifique.	n°6	n°7	
Calculer la puissance d'un nombre (positive ou négative).	n°8, 9	n°10, 11	n°12
Utiliser les propriétés des puissances pour simplifier et effectuer des calculs.	n°13		n°14, 15
Résoudre des problèmes faisant appel aux puissances.	n°16	n°17	n°18
Exercices type Brevet.			n°19, 20

A) Puissances de 10

▶ Définition 1 : Puissances de 10

Si n est un entier strictement positif, alors on notera :

$$10^{n} = \underbrace{10 \times 10 \times \dots \times 10}_{n \text{ fois}} = 1 \underbrace{00 \dots 0}_{n \text{ zéros}}$$

ET

$$10^{-n} = \frac{1}{10^n} = \underbrace{0,00\ldots 0}_{n \text{ zéros}} 1$$

Exemple(s):

$$10^3 = 10 \times 10 \times 10 = 1000$$

$$10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100 \ 000$$

$$10^{-3} = \frac{1}{10^3} = \frac{1}{10 \times 10 \times 10} = \frac{1}{1000} = 0,001$$

B) Écriture scientifique

Définition 2 : Écriture scientifique

L'écriture scientifique d'un nombre décimal est une écriture de la forme $a \times 10^n$ avec :

- a un nombre décimal avec 1 seul chiffre non nul devant la virgule
- n un nombre entier relatif

Exemple(s):

Parmi les écritures suivantes, entoure celles qui sont bien des écritures scientifiques :

Exemple(s):

- \blacksquare Le rayon du soleil est de 695 000 km = 6, 95 \times 10⁵ km.
- La vitesse de la lumière est de 2,99792458 \times 108 m/s = 299 792 458 m/s.
- L'atome d'actinide (un des plus gros) a un diamètre de 0,000 000 000 29 m = 2,9 \times 10⁻¹⁰ m.
- Le noyau de l'atome d'uranium a un diamètre de l'ordre de 2×10^{-14} m = 0,000 000 000 000 002 m.

C) Puissances et propriétés

▶ Définition 3 : Puissances

Si n est un entier ≥ 2 , et si a est un entier relatif, alors on notera :

$$a^n = \underbrace{a \times a \times \cdots \times a}_{n \text{ fois}}$$

ET

$$a^{-n} = \frac{1}{a^n}$$

Exemple(s) :

$$5^2 = 5 \times 5 = 25$$

$$6^7 = 6 \times 6 \times 6 \times 6 \times 6 \times 6 \times 6 = 279936$$

$$5^{-2} = \frac{1}{5^2} = \frac{1}{5 \times 5} = \frac{1}{25} = 0,04$$

$$6^{-7} = \frac{1}{6 \times 6 \times 6 \times 6 \times 6 \times 6 \times 6} = \frac{1}{279 \ 936} \approx 3.5 \times 10^{-6}$$

Propriété 1 : Cas particuliers

- Quel que soit a on a toujours $a^1 = a$
- Si $a \neq 0$ on a alors toujours $a^0 = 1$

Propriété 2 : Calculer avec les puissances

$$a^m \times a^p = a^{m+p}$$

$$\frac{a^m}{a^p} = a^{m-p}$$

$$(a^m)^p = a^{m \times p}$$

<u>X</u> <u>Démonstration</u> :

$$7^5 \times 7^3 = \overbrace{7 \times 7 \times 7 \times 7 \times 7 \times 7}^{5 \text{ fois}} \times \overbrace{7 \times 7 \times 7 \times 7}^{3 \text{ fois}} = \overbrace{7 \times 7 \times \cdots \times 7}^{5+3 \text{ fois}} = 7^{5+3}$$

$$(9^2)^3 = (9 \times 9)^3 = (9 \times 9) \times (9 \times 9) \times (9 \times 9) = \underbrace{9 \times 9 \times \cdots \times 9}_{2 \times 3 \text{ fois}} = 9^{2 \times 3}$$

Remarque : Dans une expression sans parenthèses, on calcule les puissances avant les multiplications et les divisions !

$$-2^2 = -(2 \times 2) = -4$$

$$(-2)^2 = (-2) \times (-2) = +4$$