Séquence 7 : Grandeurs simples et composées

Ø ♥ Ø OBJECTIFS : ♥ Ø ♥

À la fin de cette Séquence 7, je dois connaître	Pour m'entraîner :
Les principales grandeurs simples et leur tableau de conversion.	Cours partie A
Les principales grandeurs <i>produit</i> et leur tableau de conversion.	Cours partie B) 1
Les principales grandeurs quotient.	Cours partie B) 2

L. Life county folia-	P	Pour m'entraîner :					
Je dois savoir faire	\Rightarrow	**	**				
Convertir des grandeurs avec (ou sans) tableau de conversion.	n°1	n°2					
Utiliser des grandeurs produit dans des problèmes.	n°3, 4	n°5, 7					
Résoudre des problèmes avec des vitesses moyennes.	n°8	n°9, 10, 11					
Utiliser des grandeurs quotient dans des problèmes.	n°6	n°12, 13	n°14				
Exercices type Brevet.			n°15				

A) Grandeurs simples

Vous connaissez déjà de nombreuses grandeurs simples :

- La longueur, exprimée en mètres (m)
- La masse, exprimée en kilogramme (kg)
- La durée, exprimée en secondes (s)
- L'intensité électrique, exprimée en ampères (A)
- La température, exprimée en degrés Celsius (°C) ou Kelvin (K)

Pour effectuer des conversions dans ces grandeurs, il suffit d'utiliser un tableau de conversion simple :

kilo mètre	hecto mètre	déca mètre	mètre	déci mètre	centi mètre	millimètre
k m	hm dam		m	d m	cm	m m
		1	2 _(,)	3	0	0
	0,	0	3	5	4	

On trouve ainsi facilement que :

$$12, 3 \text{ m} = 12 300 \text{ mm}$$

354 cm = 0,035 4 hm

B) Grandeurs composées

1. Grandeurs produit

\blacktriangleright **Définition 1**: Grandeurs produit

Les grandeurs produit sont des grandeurs obtenues en multipliant des grandeurs simples entre elles.

Exemple(s):

- L'aire, exprimée en mètres-carrés (m²) : $A_{carré} = côté$ (m) \times côté (m)
- Le **volume**, exprimé en **mètres-cubes** (m^3) : $\mathcal{V}_{\text{cube}} = \text{côté} (m) \times \text{côté} (m) \times \text{côté} (m)$
- L'énergie électrique, exprimée en kilowatts-heure (kWh) : $\mathcal{E} = \text{puissance}$ électrique (kW) \times durée (h)

Pour convertir des aires et des longueurs, il faut penser à utiliser un tableau de conversion avec **le nombre de colonnes adapté** à la dimension :

Tableau de conversion des aires													
km ² hm ²		hm ² dam ²		m ²		dm ²		cm ²		mm ²			
	6(,)	5	0	0	0								

Ī	Tableau de conversion des volumes																			
	km ³		hm ³			dam ³		m ³			dm ³			cm ³		mm ³				
ĺ							4	2	0	0	0	0	0	0						

On trouve ainsi facilement que :

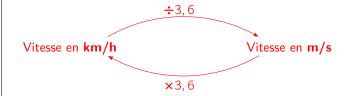
$$6.5 \text{ km}^2 = 65 000 \text{ hm}^2$$

$$42 \text{ dam}^3 = 42 000 000 \text{ dm}^3$$

2. Grandeurs quotient

▶ Définition 2 : Grandeurs quotient

Les grandeurs quotient sont des grandeurs obtenues en divisant une grandeur simple par une autre.


Exemple(s):

La vitesse moyenne =
$$\frac{\text{distance (en km ou m)}}{\text{dur\'ee (en h ou s)}}$$
 s'exprime donc en km/h ou m/s

La masse volumique =
$$\frac{\text{masse (en kg ou g)}}{\text{volume (en m}^3 \text{ ou cm}^3)}$$
 s'exprime donc en kg/m^3 ou g/cm^3

Le **débit** =
$$\frac{\text{volume (en } m^3 \text{ ou L})}{\text{durée (en h ou s)}}$$
 s'exprime donc en m^3/s ou L/s par exemple

→ Méthode 1 : Convertir des vitesses (« par cœur »)

Exemples:

13
 450 km/h = **450** ÷ **3,6** = **125** m/s

$$100 \text{ m/s} = 100 \times 3.6 = 360 \text{ km/h}$$

$$^{\text{LS}}$$
 25 200 km/h = **25 200** ÷ **3,6** = **7 000** m/s

→ Méthode 2 : Convertir des vitesses (« en réfléchissant »)

Exemple : Un avion parcourt 1 350 km en 1,5 h. Quelle est sa vitesse en km/h? La convertir ensuite en m/s.

D'après la formule de la vitesse on a :

$$v = \frac{d}{t} = \frac{1\ 350\ \text{km}}{1,5\ \text{h}} = 900\ \text{km/h}$$

Convertissons ensuite cette vitesse en m/s :

L'avion vole à 900 km/h, il parcourt donc 900 km en 1h.

or 1 km = 1 000 m donc il parcourt 900 000 m en 1 h. Sa vitesse est donc de 900 000 m/h (×1 000).

Enfin, 1 h = 3600 s, donc il parcourt 900 000 \div 3 600 = 250 m en 1 s (\div 3 600).

Sa vitesse est donc de 250 m/s.