Séquence 14 : Fonctions linéaires, affines et constantes

Ø ♥ Ø OBJECTIFS : ♥ Ø ♥

À la fin de cette Séquence 14, je dois connaître	Pour m'entraîner :	
La définition et les propriétés (dont représentation graphique) d'une fonction linéaire.	Cours parties A)1. et B)1.	
La définition et les propriétés (dont représentation graphique) d'une fonction affine.	Cours parties A)2. et B)2.	
La définition et les propriétés (dont représentation graphique) d'une fonction constante.	Cours parties A)3. et B)3.	

Je dois savoir faire	F	Pour m'entraîner :		
	☆	**	***	
Reconnaître la <i>nature</i> d'une fonction f par l'expression de $f(x)$.	n°1	n°2	n°3	
Reconnaître la <i>nature</i> d'une fonction f par le graphe \mathcal{C}_f .	n°4			
Représenter graphiquement une fonction.	n°5, 6	n°7		
Lire graphiquement les coefficients d'une fonction affine.	n°8	n°9, 10		
Calculer l'image et l'antécédent d'un nombre par une fonction.		n°11, 12		
Résoudre des problèmes impliquant des fonctions.		n°13	n°14, 15	

Définitions A)

1. Fonctions affines

▶ Définition 1 : Fonction affine

Une **fonction affine** est une fonction qui à tout nombre x associe le nombre f(x) = ax + b. a et b sont des nombres relatifs donnés appelés les **coefficients** de la fonction f.

Exemple(s):

$$f(x) = 3x + 6$$

$$a=3$$
 et $b=6$

$$g: x \mapsto -5x + 9$$

$$a=-5$$
 et $b=9$

$$f(x) = 3x + 6$$
 $g: x \mapsto -5x + 9$ $h: x \mapsto h(x) = 2x - 3.5$

$$a = 2$$
 et $b = -3, 5$

2. Fonctions linéaires

▶ Définition 2 : Fonction linéaire

Une **fonction linéaire** est une fonction qui à tout nombre x associe le nombre f(x) = ax.

a est un nombre relatif non nul donné appelé le **coefficient** de la fonction f.

Une fonction linéaire est une fonction affine avec b = 0.

Exemple(s):

$$f(x) = 5x$$

$$a = 5$$

$$g: x \mapsto -\frac{1}{2}x$$

$$a = -\frac{1}{2}$$

$$h: x \mapsto h(x) = 9,2x$$

$$a = 9, 2$$

3. Fonctions constantes

▶ Définition 3 : Fonction constante

Une fonction constante est une fonction qui à tout nombre x associe le nombre f(x) = b.

b est un nombre relatif.

L'image d'une fonction constante est constante : que quel que soit l'antécédent x, le résultat f(x) est **toujours le même**.

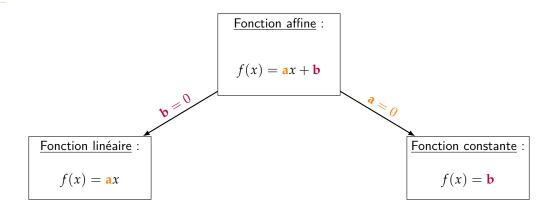
Exemple(s):

$$f(x) = -3$$
$$\mathbf{b} = -3$$

$$g: x \mapsto \frac{7}{3}$$
$$\mathbf{b} = \frac{7}{3}$$

$$h: x \mapsto h(x) = 0$$
$$\mathbf{b} = \mathbf{0}$$

4. Résumé



B) Représentations graphiques

1. Fonctions affines

Propriété 1 : Représentation graphique d'une fonction affine

Dans un repère, une **fonction affine** est représentée par une **droite**. Les coefficients de la fonction affine $f(x) = \mathbf{a}x + \mathbf{b}$ influent sur la droite :

- a est le coefficient directeur de la droite : il donne son inclinaison.
- **b** est l' ordonnée à l'origine de la droite : il donne l'endroit où la droite coupe l'axe des ordonnées.

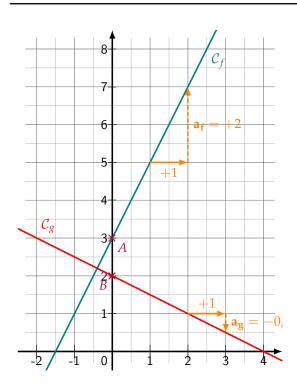
Pour une fonction $f(x) = \mathbf{a}x + \mathbf{b}$:

- a signifie que si l'on se déplace de 1 unité vers la droite, alors on « monte » de a unités (ou on descend si a est négatif).
- **b** signifie que la droite coupe l'axe des ordonnées à la « hauteur » **b**.

Exemple(s):

Dans le repère de la page suivante, on veut tracer les représentations graphiques des fonctions :

$$f: x \mapsto 2x + 3$$
 et $g: x \mapsto -0, 5x + 2$



$$f(x) = 2x + 3$$

- Le coefficient directeur est 2 donc : Quand on avance de 1, on monte de 2.
- L'ordonnée à l'origine est $\bf 3$ donc : La droite passe par le point $A(0; \bf 3)$

$$g(x) = -0.5x + 2$$

- Le coefficient directeur est -0.5 donc : Quand on avance de 1, on **descend** de 0.5.
- L'ordonnée à l'origine est $\bf 2$ donc : La droite passe par le point $B(0; \bf 2)$

2. Fonctions linéaires

Propriété 2: Représentation graphique d'une fonction linéaire

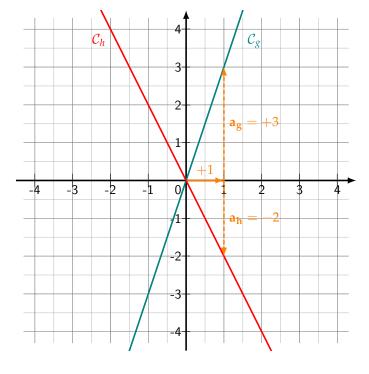
Dans un repère, une fonction linéaire est représentée par une droite passant par l'origine.

Le coefficient **a** est le **coefficient directeur** qui donne l'inclinaison de la droite.

Dans le repère ci-contre, tracer les représentations graphiques des fonctions suivantes :

$$h: x \mapsto 3x$$

$$g: x \mapsto -2x$$



3. Fonctions constante

Propriété 3: Représentation graphique d'une fonction constante

Dans un repère, une fonction constante est représentée par une droite parallèle à l'axe des abscisses, et coupant l'axe des ordonnées à la « hauteur » **b** (l'ordonnée à l'origine).

Exemple(s):

La fontion $f: x \mapsto -3,42$ aura pour représentation graphique une droite horizontale passant par le point (0; -3,42).

4. Résumé

Dans le repère ci-contre, trace les représentations graphiques des fonctions suivantes :

$$f: x \mapsto \frac{1}{2}x + 3$$

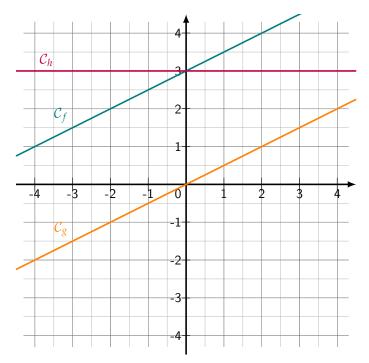
f est une fonction affine de coefficient directeur $\frac{1}{2}$ et d'ordonnée à l'origine 3.

$$g: x \mapsto \frac{1}{2}x$$

f est une fonction linéaire de coefficient directeur $\frac{1}{2}$

$$h: x \mapsto 3$$

f est une fonction constante d'ordonnée à l'origine 3.



C) Images et antécédents

Pour calculer l'image d'un nombre par n'importe quelle fonction (affine, linéaire ou autre), il suffit de remplacer x par le nombre en question dans l'expression de la fonction.

Exemple(s):

Calculer les **images** de 2 et de -5 par les fonctions suivantes :

$$f: x \mapsto -3x$$

$$f(2) = -3 \times 2 = -6$$

$$f(-5) = -3 \times (-5) = 15$$

$$g: x \mapsto 4x - 5$$

$$g(2) = 4 \times 2 - 5 = 8 - 5 = 3$$

$$g(-5) = 4 \times (-5) - 5 = -20 - 5 = -25$$

← Méthode 2 : Trouver l'antécédent d'un nombre par une fonction affine au linéaire

Pour trouver l'antécédent du nombre k par la fonction f, il faut résoudre l'équation f(x) = k.

Exemple(s):

Calculer le(s) **antécédent(s)** de 3 par la fonction $f: x \mapsto 2x - 5$:

Il faut donc résoudre l'équation suivante :

$$f(x) = 3$$

$$2x - 5 = 3$$

$$2x - 5 + 5 = 3 + 5$$

$$2x = 8$$

$$2x \div 2 = 8 \div 2$$

$$x = 4$$

3 a donc pour unique antécédent 4 par la fonction f.