<u>Séquence 15</u>: Trigonométrie

ă o o 10	Φ.		
À la fin de cette Séquence 15, je dois connaître	Pour m'en	traîner :	
• Les formules de cosinus, sinus, tangente	Cours partie A		
• Les méthodes de résolution des problèmes	Cours partie B		
Je dois savoir faire	Pour m'entraîner:		
	4	4.4	444
Calculer le cosinus, le sinus, et la tangente d'un angle aigu dans			
un triangle rectangle.			
• Utiliser les formules du cosinus, du sinus et de la tangente pour			
calculer la longueur d'un côté d'un triangle rectangle.			
Utiliser les formules du cosinus, du sinus et de la tangente pour			
calculer la mesure d'un angle dans un triangle rectangle.			

A) Cosinus, sinus, tangente d'un angle aigu

<u>Définition</u>: Dans un triangle rectangle:

ightarrow Le <u>sinus</u> d'un angle aigu est le quotient : $rac{ extit{Côt\'e oppos\'e}}{ extit{Hypot\'enuse}}$ $\left(S = rac{O}{H}
ight)$

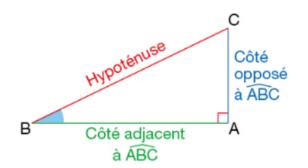
ightarrow Le <u>cosinus</u> d'un angle aigu est le quotient : $rac{ extit{Côt\'e} \ adjacent}{ extit{Hypot\'enuse}} \ \left(C = rac{A}{H}
ight)$

ightarrow La <u>tangente</u> d'un angle aigu est le quotient : $rac{ extit{Côt\'e adjacent}}{ extit{Côt\'e oppos\'e}}$ $\left(T=rac{O}{A}
ight)$

Moyen mnémotechnique:

SOH-CAH-TOA

Exemple: dans le triangle ci-dessous ABC rectangle en A on a:



$$\sin \widehat{ABC} = \frac{AC}{BC}$$

$$\cos \widehat{ACB} = \frac{AB}{BC}$$

$$\tan \widehat{ACB} = \frac{AC}{AB}$$

<u>Propriété</u>: Dans un triangle rectangle, le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1!

<u>Propriété</u> : Dans un triangle rectangle, pour tout angle aigu de mesure lpha on a :

$$(\sin \alpha)^2 + (\cos \alpha)^2 = 1$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

B) Utilisation pour résoudre des problèmes

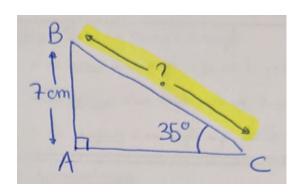
1. <u>Pour calculer la longueur d'un côté d'un triangle dont on connaît un côté et un</u> <u>angle aigu</u> :

Méthode:

- 1. Faire un <u>schéma du triangle</u> en plaçant toutes les informations connues.
- 2. Le demander quel est le côté dont on connaît la longueur, et quel côté cherche-t-on?
- 3. Écrire le rapport (cosinus, sinus ou tangente?) qui fait intervenir les 2 longueurs.
- 4. Résoudre l'égalité.

Exemple : Soit ABC un triangle rectangle en A. On a AB = 7 cm et \widehat{ACB} = 35°. Calculer CB :

1. Schéma:



- 2. On connaît le <u>côté opposé</u> à \widehat{ACB} : AB On cherche l'<u>hypoténuse</u> : BC
- 3. On utilise donc <u>le sinus</u>:

$$\sin \widehat{ACB} = \frac{AB}{BC}$$

4. On résout :

$$\sin \ 35^{\circ} = \frac{7 \ cm}{BC}$$

$$\mathrm{BC} = \frac{7 \ cm}{\sin \ 35^{\circ}} \approx 12,2 \ \mathrm{cm}$$

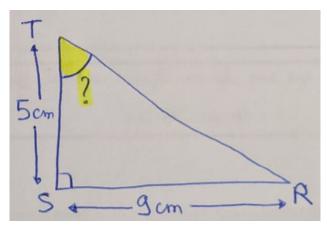
2. Pour déterminer la mesure d'un angle du triangle dont on connaît deux côtés :

Méthode

- 1. Faire un <u>schéma du triangle</u> en plaçant toutes les informations connues.
- 2. Le demander quels sont les deux côtés dont on connaît la longueur?
- 3. Écrire le rapport (cosinus, sinus ou tangente?) qui fait intervenir les 2 longueurs.
- 4. Résoudre l'égalité.

Exemple : Soit RST un triangle rectangle en S. On a RS = 9 cm et TS = 5 cm. Calculer la mesure de \widehat{RTS} :

1. Schéma :



- 2. On connaît le <u>côté opposé</u> à \widehat{RTS} : RS On connaît le <u>côté adjacent</u> à \widehat{RTS} : TS
- 3. On utilise donc <u>la tangente</u>:

$$\tan \widehat{RTS} = \frac{RS}{TS}$$

4. On résout :

$$\tan \widehat{RTS} = \frac{9 \ cm}{5 \ cm}$$

Pour trouver la valeur de \widehat{RTS} , il faut utiliser la touche « \arctan » de la calculatrice :

$$\widehat{RTS}$$
 = arctan $\left(\frac{9}{5}\right)$ \approx 60,9°