Séquence 8 : Notion de fonction

Ø ♥ Ø OBJECTIFS : ♥ Ø ♥

À la fin de cette Séquence 8, je dois connaître	Pour m'entraîner :
Les définitions de « image » et « antécédent ».	Cours partie A
Les différentes représentations d'une fonction.	Cours partie B

Je dois savoir faire		Pour m'entraîner :		
		**	☆☆☆	
Utiliser le vocabulaire des fonctions.	n°1, 2			
Retrouver l'image ou l'antécédent d'un nombre à l'aide d'un calcul.	n°3	n°4	n°5	
Retrouver l'image ou l'antécédent d'un nombre à l'aide d'un tableau ou d'un graphique.	n°6	n°7	n°8	
Résoudre un problème à l'aide d'une fonction.		n°9	n°10	

Les fonctions sont des objets mathématiques très importants. Elles servent à modéliser de nombreux phénomènes, qu'ils soient physiques, biologiques, technologiques ou économiques par exemple.

A) Définitions

▶ Définition 1 : Fonction

Une **fonction** f est un *processus* qui à un nombre x associe un UNIQUE nombre f(x) qui se lit « f de x ». On note :

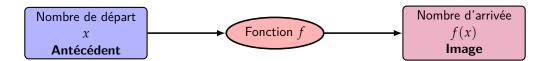
$$f: x \mapsto f(x)$$

« La fonction f qui à x associe f de x. »

Exemple(s):

1) Quelle est la fonction qui à un nombre x associe son double?

$$f(x) = 2x$$


2) Quelle est la fonction qui à un nombre x associe la somme de son carré et de son triple?

$$f(x) = x^2 + 3x$$

▶ <u>Définition 2</u> : Image/antécédent d'un nombre par une fonction

Soit la fonction $f: x \mapsto f(x)$. Alors :

- Le nombre f(x) est l'image de x par la fonction f.
- Le nombre x est un antécédent de f(x) par la fonction f.

Exemple(s):

1) Soit la fonction $f: x \mapsto x^2 + 6$. Quelles sont les **images** de 0, de -2 et de -6 par f?

$$f(0) = 0^2 + 6 = 6$$
; $f(-2) = (-2)^2 + 6 = 4 + 6 = 10$; $f(-6) = (-6)^2 + 6 = 36 + 6 = 42$

2) Soit la fonction $g: x \mapsto x^2$. Quelles sont les **antécédents** de 0, de 9 et de -4 par g?

$$\mathbf{0} = 0^2 = \mathbf{f}(\mathbf{0})$$
 ; $\mathbf{9} = 3^2 = \mathbf{f}(\mathbf{3})$; $-\mathbf{4}$ n'est le carré d'aucun nombre donc -4 n'a pas d'antécédent par f .

Remarque : Un nombre a toujours une seule image par une fonction f. Par contre, un nombre peut avoir aucun, un ou plusieurs antécédents par une fonction f.

B) Représentations

Une fonction est généralement définie par sa « formule » (comme dans les exemples ci-dessus), mais elle peut être représentée de diverses manières, qui aident à mieux la visualiser, la comprendre, à trouver l'image ou l'antécédent de certaines valeurs... Cela permet aussi de comparer les fonctions entre elles par exemple. Dans cette partie nous allons considérer la fonction h suivante qui à un nombre associe son carré moins $\mathbf{5}$.

1. Le tableau

On peut représenter une fonction avec un tableau de quelques unes de ses valeurs :

x	-6	-1	0	2	6	10
h(x)	31	-4	-5	-1	31	95

En utilisant le tableau ci-dessous, réponds aux questions suivantes :

1) Quelles sont les images de -6 et de 2?

D'après le tableau, L'image de -6 est 31, et l'image de 2 est -1.

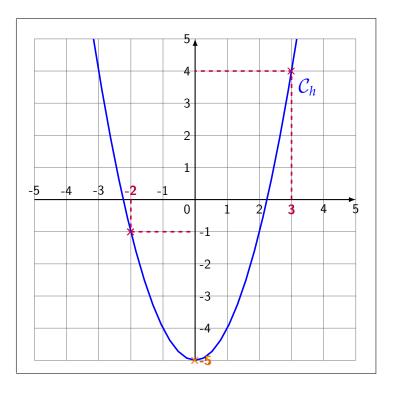
2) Quels sont les antécédents de -5, de 95 et de 31?

D'après le tableau, -5 a pour antécédent 0, 95 a pour antécédent 10 et 31 a pour antécédents -6 et 6.

2. Le graphique

▶ Définition 3 : Courbe représentative

Dans un repère, la **courbe représentative** (ou **représentation graphique**) d'une fonction h est l'ensemble des points de coordonnées $(\mathbf{x}; \mathbf{h}(\mathbf{x}))$.


On note généralement cette courbe représentative C_h .

Sur l'axe des abscisses on peut lire :

x, l'antécédent de h(x).

Sur l'axe des ordonnées on peut lire :

h(x), l'image de x.

Exemple(s):

1) Donner graphiquement l'image de 3 et de -2:

$$h(3) = 4$$
 et $h(-2) = -1$

1) Donner graphiquement l'antécédent de -5:

$$-5 = h(0)$$

Exercices

\blacksquare Exercice 1:

Une fonction f est telle que f(-3) = 4. Traduire cette égalité par une phrase contenant...

1) ... le mot « image » :

4 est l'image de -3 par la fonction f.

2) ... le mot « antécédent » :

-3 est un <u>antécédent</u> de 4 par la fonction f.

Exercice 2 : ☆

Traduire les phrases suivantes par une égalité :

- 1) « L'image de 3 par la fonction f est -5 » : $\mathbf{f(3)} = -\mathbf{5}$
- 2) « -4 est un antécédent de 7 par la fonction g » : $\mathbf{g}(-\mathbf{4})=\mathbf{7}$

Exercice 3: ☆

Parmi les fonctions suivantes, entourer celle(s) qui, à un nombre x, associe son triple :

$$f: x \mapsto x + 3$$

$$g(x) = 4x - x = 3x$$

$$h: x \mapsto 3x$$

$$l: x \mapsto -3x$$

Exercice 4 : ☆☆

- On donne le programme de calcul ci-contre. 1) Exprimer h(x) en fonction de $x : \rightarrow \mathbf{h}(\mathbf{x}) = 2\mathbf{x} + \mathbf{5}$
- Prendre un nombre *x*
 - 2) Quelle est l'image de $\frac{1}{3}$ par h? \rightarrow $h(\frac{1}{3}) = 2 \times \frac{1}{3} + 5 = \frac{17}{3} \approx 5,67$
- 3) Donner le(s) antécédent(s) de 9 par la fonction h: Ajouter 5 au résultat

$$2x + 5 = 9 \qquad \Rightarrow \qquad 2x + 5 - 5 = 9 - 5 \qquad \Rightarrow \qquad 2x = 9 - 5$$

$$\Rightarrow 2x \div 2 = 4 \div 2 \Rightarrow x = 2$$

2 est l'unique antécédent de 9 par la fonction h.

☞ Exercice 5: ☆☆☆

□ Le multiplier par 2

 \square On obtient h(x)

Choisir un nombre

Prendre son carré

Ajouter 4 au résultat

Prendre l'inverse du nombre obtenu

On donne le programme de calcul ci-contre.

1) a. Quel nombre obtient-on si on choisit 1 comme nombre de départ?

$$1 \to 1^2 = 1 \to 1 + 4 = 5 \to \frac{1}{5}$$

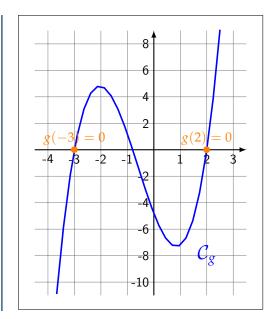
b. Quel nombre obtient-on si on choisit x comme nombre de départ ? $x \to x^2 \to x^2 + 4 \to \frac{1}{x^2 + 4}$

$$x \to x^2 \to x^2 + 4 \to \frac{1}{x^2 + 4}$$

2) En déduire la fonction g correspondant à ce programme de calcul :

$$g: x \mapsto \frac{1}{x^2+4}$$

- a. Donner l'image de 2 par la fonction $g: o \mathbf{g}(2)=rac{1}{2^2+4}=rac{1}{8}$
 - b. Calculer $g(-1): \to g(-1) = \frac{1}{(-1)^2 + 4} = \frac{1}{5}$
 - c. 0 a-t-il un antécédent par la fonction g? Pourquoi?


Non, car il faudrait trouver un nombre x tel que $\frac{1}{x^2+4}=0$, donc il faudrait que l'inverse de x^2+4 fasse 0. Or aucun nombre n'a pour inverse 0

Exercice 6 : ☆

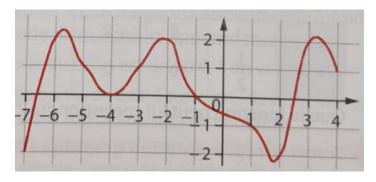
On donne $f(x) = 2x^2$. compléter le tableau ci-dessous :

x	0	-1	2	-2
f(x)	$2\times0^2=0$	$2\times(-1)^2=2$	$2\times 2^2=8$	$2\times(-2)^2=8$

Exercice 7 : ☆☆

Voici la courbe représentative d'une fonction g ci-contre.

Est-il vrai que g(-3) = g(2) ? Justifier.

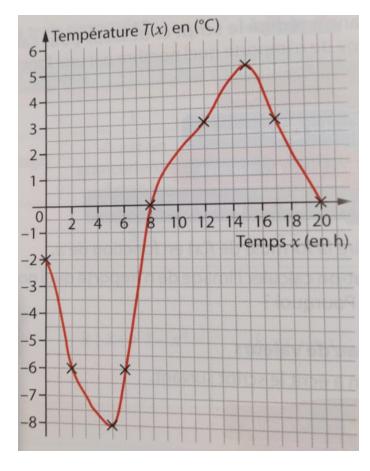

On peut lire graphiquement que :

$$\begin{cases} g(-3)=0 \\ g(2) =0 \end{cases}$$

Donc on a bien g(-3) = g(2).

Exercice 8: 🌣 🌣 🛠

Voici la courbe d'une fonction f:



Déterminer graphiquement, quand c'est possible :

- 1) l'image de $-1: \rightarrow \mathbf{0}$
- 2) un antécédent de 2 : $\rightarrow -6 \ \ \, ; \ \ \, -5,5 \ \ \, ; \ \ \, -2 \ \ \, ; \ \ \, 3$; $\ \, 3,5$
- 3) $f(-6): \to 2$
- 4) des antécédents de $1: \rightarrow -6,5$; -5 ; -3 ; -1,5 ; 2,5 ; 4
- 5) un nombre qui a pour image 3 : Impossible
- 6) un nombre qui a pour antécédent $2: \rightarrow -2$
- 7) une solution de l'équation f(x) = 0:

Il s'agit des valeurs de x telles que C_g touche l'axe des abscisses donc par exemple -6,5, -4, -1 ou 2,5.

Exercice 9 : ☆☆

À l'aide de sa station météo, Jessie a enregistré la température T(x) en fonction du temps x entre minuit et 20 heures le 9 février 2015. Elle est représentée ci-contre.

- 1) Quelle était la température à midi ce jour-là? \rightarrow 3°C
- 2) Lire graphiquement T(17). Que représente cette valeur?

$$T(17) = 3$$

Il s'agit de la température à 17 h (qui était donc de 3°C).

3) Résoudre graphiquement T(x)=0. Que représentent la ou les solutions trouvées ?

$$T(x) = 0$$
 si $\mathbf{x} = \mathbf{8}$ ou $\mathbf{x} = \mathbf{20}$

La température était de 0° C à 8 h et à 20 h.

4) Donner l'image de 0 par la fonction T. Que représentent la ou les solutions trouvées?

$$T(-2) = 0$$

La température à minuit (0 h) était de -2° C.

5) Donner le ou les antécédents de -6 par la fonction T. Que représentent ces valeurs ?

$$T(2) = -6$$
 et $T(6) = -6$

La température était de -6° C à 2 h et à 6 h.

6) Quand la température était-elle positive ce jour-là? La température était positive entre 8 h et 20 h.

፮ Exercice 10 : ☆☆☆

Un groupe de 100 personnes vont ensemble au restaurant. Elles ont le choix entre 2 formules : une à 20 € et l'autre à 25 €.

- 1) On appelle x le nombre de personnes choisissant le menu à $20 \in$. Exprimer le montant de l'addition A(x) en fonction de x:
 - x personnes prennent le menu à 20 € ⇒ cela coûte 20x €;
 - donc 100 x personnes prennent le menu à $25 \in \Rightarrow$ cela coûte $25(100 x) \in =$

$$\Rightarrow$$
 $A(x) = 20x + 25(100 - x) = 20x + 2500 - 25x = -5x + 2500$

2) Le montant de l'addition est de 2 185 €. Combien de personnes ont choisi le menu à 20 €?

On cherche x tel que A(x) = 2 185, c'est-à-dire :

$$-5x + 2500 = 2185$$

$$-5x + 2500 - 2500 = 2185 - 2500$$

$$-5x = -315$$

$$-5x \div (-5) = -315 \div (-5)$$

$$x = 63$$

Il y a donc 63 personnes qui ont pris le menu à 20 €.

Mises au Travail
 l

