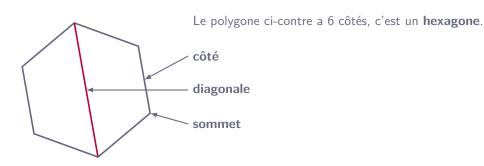
Séquence 15 : Polygones

Ø ♥ Ø OBJECTIFS : ♥ Ø ♥


À la fin de cette Séquence 15, je dois connaître	Pour m'entraîner :
Les définitions et propriétés des triangles.	Cours partie A
Les définitions et propriétés des quadrilatères.	Cours partie B

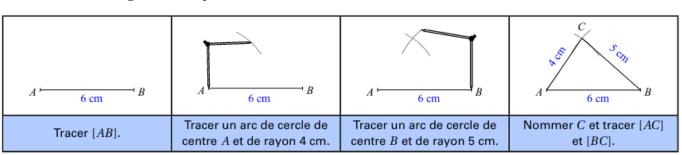
Je dois savoir faire		Pour m'entraîner :		
		**	**	
Tracer un triangle de mesures données.	n°1	n°2, 3	n°4	
Identifier un triangle particulier.	n°5	n°6		
Tracer un quadrilatère de mesures données.	n°7	n°8		
Écrire ou suivre les instructions d'un programme de construction.		n°9	n°11	
Résoudre un problème avec les propriétés des polygones.		n°10] 11	

Définition 1 : Polygone

Un polygone est une figure fermée composée de segments.

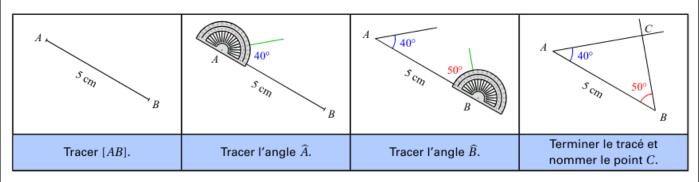
Exemple(s) :

A) Triangles

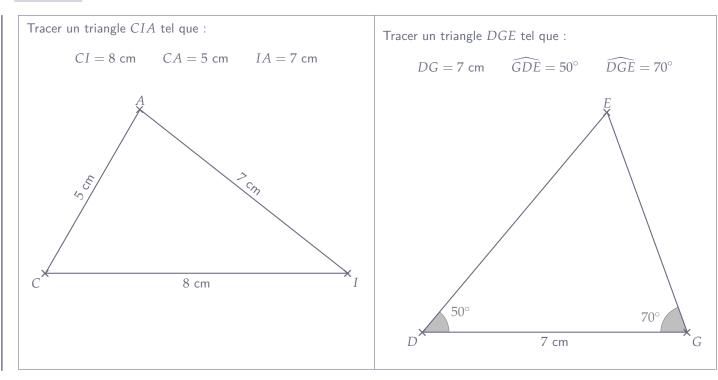

▶ Définition 2 : Triangle

Un triangle est un polygone a 3 côtés.

1. Tracer un triangle


→ <u>Méthode 1</u>: Si je connais les longueurs des 3 côtés

Tracer un triangle ABC tel que AB = 6 cm, AC = 4 cm, BC = 5 cm.



→ Méthode 2 : Si je connais une longueur et 2 angles

Tracer un triangle ABC tel que AB = 5 cm, $\hat{A} = 40^{\circ}$ et $\hat{B} = 50^{\circ}$.

Exemple(s) :

2. Triangles particuliers

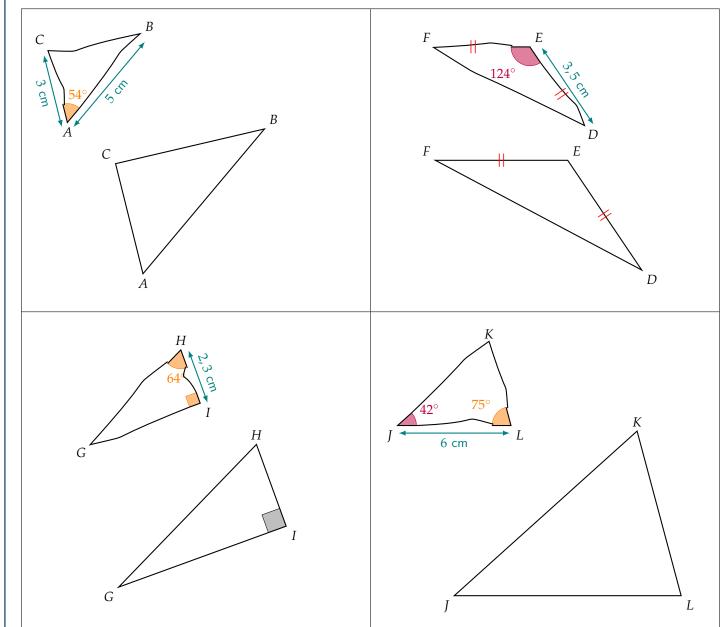
Nom	Triangle isocèle	Triangle équilatéral	Triangle rectangle
Définition	Triangle avec 2 côtés de même longueur.	Triangle avec 3 côtés de même longueur .	Triangle avec un angle droit .
Dessin	B A C	$E \xrightarrow{D} F$	G H
Remarque(s)	Dans l'exemple ci-dessus : A est le sommet principal du triangle. BC est la base du triangle.		Dans l'exemple ci-dessus, on dira : « GHI est rectangle en G » [IH] est l'hypoténuse du triangle.

B) Les quadrilatères

Définition 3 : Quadrilatère

Un quadrilatère est un polygone a 4 côtés.

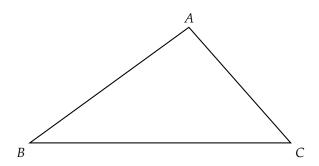
Quadrilatères particuliers :

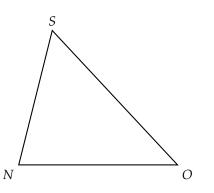

Nom	Dessin	Définition	Propriétés
Losange	$A \nearrow C$ D	Un losange est un quadrilatère qui a 4 côtés de même longueur.	Les côtés opposés d'un losange sont parallèles. Les diagonales d'un losange se coupent à angle droit en leur milieu.
Rectangle	E F H G	Un rectangle est un quadrilatère qui a 4 angles droits .	Les côtés opposés d'un rectangle sont parallèles et de même longueur. Les diagonales d'un rectangle sont de même longueur et se coupent en leur milieu.
Carré		Un carré est un quadrilatère qui a 4 côtés de même longueur et 4 angles droits.	Un carré possède toutes les propriétés des losanges et des rectangles.

3 | 12

Exercices

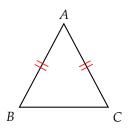
Exercice 1 : ☆


Reproduis les triangles ci-dessous en vraie grandeur :

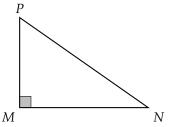

Construis le triangle ABC tel que :

$$AB=5.2~\mathrm{cm}$$
 ; $BC=6.9~\mathrm{cm}$; $\widehat{ABC}=36^\circ$

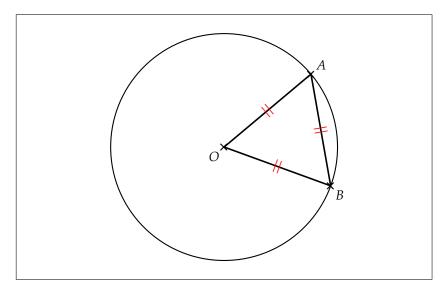
Construis le triangle NOS tel que :


$$NO=4.2~{\rm cm}$$
 ; $\widehat{NOS}=47^{\circ}$; $\widehat{SNO}=76^{\circ}$

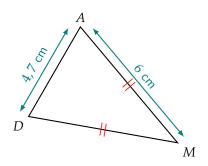
Exercice 3 : ☆☆


Construis le triangle ABC isocèle en A tel que :

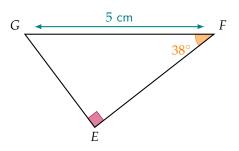
$$AC = 2.5 \text{ cm}$$
 ; $\widehat{BAC} = 56^{\circ}$


Construis le triangle MNP rectangle en M tel que :

$$MN=3.4~{\rm cm}$$
 ; $\widehat{MNP}=35^{\circ}$


Exercice 4 : ☆☆☆

- 1) Trace un cercle de centre ${\cal O}$ et de rayon 3 cm, et place un point ${\cal A}$ sur ce cercle.
- 2) Construis un point B appartenant à ce cercle tel que OAB soit un triangle équilatéral.



Exercice 5 : ☆

Quelle est la nature des triangles ci-dessous?

MA = MD donc le triangle MDA est un triangle isocèle en M.

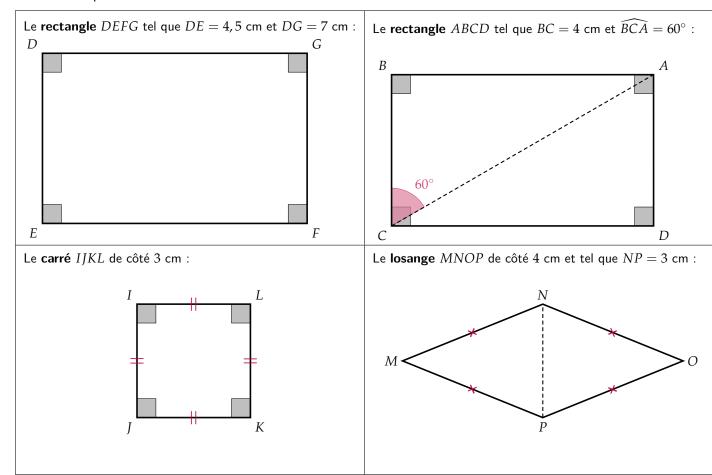
 \widehat{GEF} est un angle droit donc EFG est un triangle **rectangle** en E.

Exercice 6 : ☆☆

Vrai ou Faux? Coche la bonne réponse :

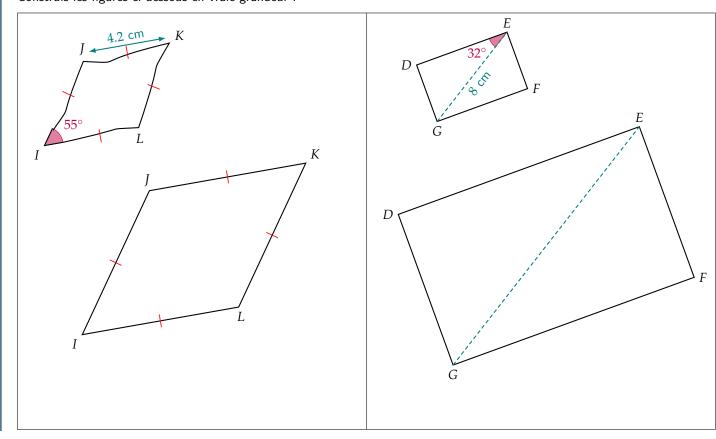
Si $AM = MN$, alors le triangle AMN est isocèle en A	☑ VRAI	☐ FAUX
Si D est sur la médiatrice du segment $[RS]$, alors le triangle DRS est isocèle en D	☑ VRAI	☐ FAUX

Si EFG est un triangle rectangle en E, alors les droites (EF) et (EG) sont perpendiculaires. \square VRAI \square FAUX


□ Un triangle peut être **rectangle** et **équilatéral**. □ VRAI

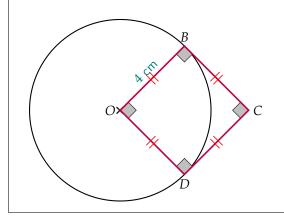
✓ FAUX

☐ FAUX


Exercice 7: 🌣

Construis les quadrilatères suivants :

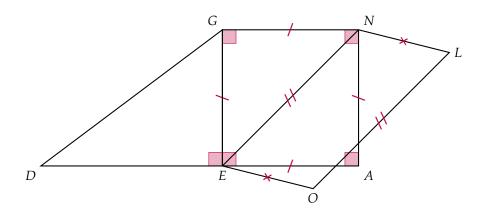
Exercice 8 : ☆☆


Construis les figures ci-dessous en vraie grandeur :

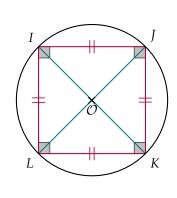
Exercice 9 : ☆☆

1) Quelle est la nature du quadrilatère *OBCD* ci-dessous?

C'est un carré.



- 2) Rédige un **programme de construction** permettant de construire la figure ci-contre :
 - 1. Tracer un **cercle** de centre \mathcal{O} et de rayon 4 cm.
 - 2. Placer un point B sur ce cercle et tracer le segment [OB].
 - 3. Placer un point D sur ce cercle de façon à avoir [OB] perpendiculaire à [OD].
 - 4. Placer le point C de façon à ce que OBCD soit un carré.


Exercice 10 : ☆☆

Sur la figure ci-dessous, placer les noms des septs sommets à l'aide des informations suivantes :

- \bowtie *ANGE* est un carré;
- № NEOL est un parallélogramme (un quadrilatère dont les côtés opposés sont deux à deux parallèles);
- \square DEG est un triangle rectangle en E;
- $E \in [AD].$

☞ Exercice 11 : ☆☆☆

- 1) Dans le cadre-ci-contre, trace un **carré** IJKL et ses **diagonales** [IK] et [JL] qui se croisent en \mathcal{O} .
- 2) Trace ensuite le cercle de centre \mathcal{O} qui passe par I.
- 3) Explique pourquoi ce cercle passe aussi par les points I, K et L:

Les diagonales d'un carré sont de même longueur et se coupent en leur milieu, donc on a OI = OJ = OK = OL.

Or, un cercle est composé de tous les points situés à une même distance de son centre.

Donc si I appartient au cercle de centre \mathcal{O} , alors I, K et L aussi!

6^{eme} **S15**: Polygones 2022-2023

IVIISES au Travail

