Suites numériques

À la fin de ce chapitre...

Je dois connaître :

- La définition et les notations d'une suite
- Les différents modes de génération d'une suite
- La représentation des suites
- Les suites croissantes, décroissantes et constantes
- Les propriétés sur la monotonie des suites
- La notion de limite d'une suite

Je dois savoir-faire :

- Calculer les termes d'une suite donnée
- Reconnaître le mode de génération d'une suite
- Tracer une suite graphiquement
- Tracer une suite avec ma calculatrice
- Étudier le sens le variation d'une suite
- Conjecturer la limite éventuelle d'une suite

A) Définition et premiers exemples

Définition 1 : Suite numérique

Soit $n_0 \in \mathbb{N}$.

Une suite numérique u est une fonction qui associe à tout entier naturel $n \ge n_0$ un nombre réel noté u_n ou u(n). On dit alors :

- u_{n_0} est le **premier terme** de la suite;
- on note la suite $(u_n)_{n \geqslant n_0}$;
- pour un entier $k \ge n_0$, on dit que u_k est le **terme de rang** ou **d'indice** k.

Remarques:

- Une suite numérique est une liste infinie et ordonnée de nombres réels qui sont « numérotés » à l'aide d'entiers naturels ;
- La plupart du temps $n_0 = 0$, voire $n_0 = 1$, mais il peut arriver que l'on démarre plus loin ;
- Le terme qui suit le terme u_n est u_{n+1} , et celui qui le précède est u_{n-1} ;
- Par contre, $u_n + 1$ est le terme u_n auquel on ajoute 1, ne pas le confondre avec u_{n+1} !

Exemple(s):

1.	Soit u la suite des nombres impairs :
	(a) Quel est le terme initial de la suite? $ ightarrow$
	(b) Quel est le second terme de la suite ? $ ightarrow$
	(c) Quel est le terme de rang 3 ? $ o$
2.	Soit v une suite et $n\in\mathbb{N}$ tel que $v_{n-1}=9,4,v_n=4,8$ et $v_{n+1}=3,5$:
	(a) Comparer v_{n-1} et $v_n-1: \rightarrow \dots$
	(b) Comparer v_{n+1} et $v_n+1: \rightarrow \dots$

B) Modes de génération

Définition 2 : Suite définie de façon explicite

Définir la suite (u_n) de manière **explicite**, c'est définir u_n à l'aide d'une formule dépendant **uniquement de** n. Cela permet de calculer directement n'importe quel terme de la suite.

De manière plus formelle, cela revient à donner une relation de la forme $u_n = f(n)$, où f est une fonction définie sur $[0; +\infty[$.

Exemple(s): $\forall n \in \mathbb{N}, u_n = 2n + 1$ est la suite des nombres impairs. Elle est ici définie explicitement :

•	• <i>u</i> ₀ =	
•	• <i>u</i> ₃ =	

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de

Définition 3 : Suite définie de façon récurrente

Définir la suite (u_n) de manière **récurrente**, c'est donner la valeur de son **terme initial** ainsi qu'une formule de u_n dépendant des **termes précédents** (et éventuellement aussi de n).

Exemple(s):

- 1. La suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\left\{ \begin{array}{l} u_0=1 \\ \forall n\in\mathbb{N},\ u_{n+1}=u_n+2 \end{array} \right.$ est la suite des nombres impairs, cette fois-ci écrite de manière récurrente. En effet : $\text{(a)}\ u_1=\dots \\ \text{(b)}\ u_2=\dots \\ \text{(c)}\ u_3=\dots \\ \end{array}$
- 2. La suite $(v_n)_{n\in\mathbb{N}}$ est définie par : $\left\{egin{array}{l} v_0=5 \ orall n\in\mathbb{N},\ v_{n+1}=2v_n-3 \end{array}
 ight.$
 - (a) $v_1 = \dots$
 - (b) $v_2 = \dots$
 - (c) $v_3 = \dots$
- 3. La suite $(w_n)_{n\in\mathbb{N}}$ est définie par : $\left\{ \begin{array}{l} w_0=0 \ {\rm et} \ w_1=3 \ \forall n\in\mathbb{N}, \ w_{n+2}=2w_{n+1}+3w_n+1 \end{array} \right.$:
 - (a) $w_2 = \dots$
 - (b) $w_3 = \dots$
 - (c) $w_4 = \dots$
- 4. La suite $(x_n)_{n\geqslant 1}$ est définie par : $\left\{\begin{array}{l} x_1=4\\ \forall n\in \mathbb{N}^*,\ x_{n+1}=2x_n-5n \end{array}\right.$:
 - (a) $x_2 = \dots$
 - (b) $x_3 = \dots$
 - (c) $x_4 = \dots$

<u>Définition 4</u>: Suite définie par un algorithme

Plus rarement, on pourra aussi définir une suite à l'aide d'un algorithme, qui permet de calculer tous les termes.

Exemple(s):

Une très célèbre suite est celle de Syracuse, que l'on peut définir à l'aide de l'algorithme Python suivant :

```
def syracuse(u, n):
    # u0 est le premier terme de la suite
    # n est le numéro du terme que l'on cherche
    u = u0
    for i in range(n):
        if u%2 == 0: # Si le terme courant est pair
            u = u/2
        else: # Sinon (terme courant impair)
            u = 3 * u + 1
    return u
```

1. Calculer les 6 premiers termes de la suite si $u_0=26$:

```
(a) u_1 = \dots
```

- (b) $u_2 = \dots$
- (c) $u_3 = \dots$
- (d) $u_4 = \dots$
- (e) $u_5 = \dots$
- (f) $u_6 = \dots$
- 2. Quelle est la formule de récurrence de cette suite $? \rightarrow \dots$

C) Représentation graphique

Définition 5 : Représentation graphique d'une suite numérique

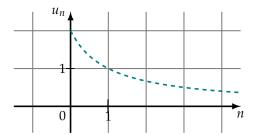
Dans un repère, une suite (u_n) est le **nuage de points** de coordonnées (n, u_n) avec $n \in \mathbb{N}$.

Remarque:

- Pour représenter une suite définie explicitement par $u_n = f(n)$, il suffit de tracer la courbe de f et de prendre les points d'abscisses entières ;
- Pour représenter une suite définie par récurrence, il existe une méthode utilisant la courbe de g si $u_{n+1} = g(u_n)$ et la droite d'équation y = x. Nous la verrons dans les exercices.

Exemple(s): Soit $(u_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N},\ u_n=\frac{2}{n+1}$.

On a représenté la courbe de la fonction $f: x \mapsto \frac{2}{x+1}$. Tracer les points de la suite u:



Définition 6 : Sens de variation d'une suite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On dit que :

- (u_n) est **croissante** lorsque $\forall n \in \mathbb{N}$, $u_{n+1} \geqslant u_n$;
- (u_n) est **décroissante** lorsque $\forall n \in \mathbb{N}$, $u_{n+1} \leq u_n$;
- (u_n) est croissante à partir d'un rang p lorsque $\forall n \ge p$, $u_{n+1} \ge u_n$;
- (u_n) est **décroissante à partir d'un rang** p lorsque $\forall n \ge p$, $u_{n+1} \le u_n$;
- (u_n) est **constante** (ou **stationnaire**) à partir d'un rang p lorsque $\forall n \ge p$, $u_{n+1} = u_n$;

Exemple(s):

- La suite des nombres impairs est;
- ullet La suite $\left(\left(-1
 ight)^n
 ight)_{n\in\mathbb{N}}$ est \dots

Propriété 1 : Sens de variation d'une suite définie de façon explicite

Soit $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=f(n)$, avec f une fonction définie sur l'intervalle $[0;+\infty[$, et $p\in\mathbb{N}.$

- Si la fonction f est **croissante** sur l'intervalle $[p; +\infty[$, alors la suite (u_n) est **croissante** à partir du rang p;
- Si la fonction f est **décroissante** sur l'intervalle $[p; +\infty[$, alors la suite (u_n) est **décroissante** à partir du rang p;
- Si la fonction f est **constante** sur l'intervalle $[p; +\infty[$, alors la suite (u_n) est **stationnaire** à partir du rang p.

Démonstration:

1er cas uniquem	ent:		

Remarques:

- Attention, les réciproques de ces propriétés sont fausses! Même si la suite est croissante, rien n'oblige la fonction par laquelle on la définit de l'être (entre chaque valeur entière, elle peut « faire n'importe quoi »);
- Ces propriétés ne s'appliquent pas aux suites définies par récurrence !

Méthode 1 : Étudier le sens de variation d'une suite

Pour étudier le sens de variation d'une suite (u_n) , 3 méthodes sont envisageables :

- 1. Si la suite est définie explicitement, on étudie le sens de variation de la fonction f telle que $u_n = f(n)$;
- 2. On étudie le signe de la différence $u_{n+1} u_n$:
 - Si $u_{n+1} u_n > 0$, alors $u_{n+1} > u_n$ et donc la suite est strictement croissante;
 - Si $u_{n+1} u_n < 0$, alors $u_{n+1} < u_n$ et donc la suite est strictement décroissante;
 - Si $u_{n+1} u_n = 0$, alors $u_{n+1} = u_n$ et donc la suite est constante.
- 3. On compare le quotient $\frac{u_{n+1}}{u_n}$ avec 1 :
 - Si $\frac{u_{n+1}}{u_n} > 1$, alors $u_{n+1} > u_n$ et donc la suite est strictement croissante;
 - Si $\frac{u_{n+1}}{u_n} < 1$, alors $u_{n+1} < u_n$ et donc la suite est strictement décroissante;
 - Si $\frac{u_{n+1}}{u_n} = 1$, alors $u_{n+1} = u_n$ et donc la suite est constante.

Exemple(s): Étudier le sens de variation des suites suivantes :

1. $(u_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}$, $u_n=-2n+6$:

2. $(v_n)_{n\in\mathbb{N}}$ telle que $\left\{ egin{array}{l} v_0=2 \\ v_{n+1}=v_n+2n+1 \end{array}
ight.$

D) Notion de limites

L'objectif de cette dernière partie est d'étudier le comportement des suites lorsque n devient « très grand ». On dit alors qu'on étudie la **limite** de la suite lorsque n **tend vers** $+\infty$. Pour le moment, on se contentera de définitions intuitives et de méthodes expérimentales.

Définition 7: Suite convergente

Soit (u_n) une suite numérique, et l un nombre réel. On dit que « (u_n) tend vers l lorsque n tend vers $+\infty$ », ou que « la limite de (u_n) lorsque n tend vers $+\infty$ est l » si quand n augmente, les valeurs de u_n se rapprochent de la valeur l. On le note ainsi :

$$\lim_{n\to+\infty}u_n=l$$

Dans ce cas, on dit que (u_n) est une **suite convergente**.

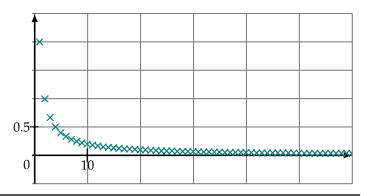
Exemple(s) :

On a tracé ci-contre la suite (u_n) définie pour tout n > 0 par :

$$u_n = \frac{2}{n}$$

Que peut-on dire de sa limite?

.....



Définition 8 : Suite divergente

Une suite (u_n) est **divergente** si elle n'est pas convergente.

Cas particulier: on dit que « (u_n) tend vers $+\infty$ lorsque n tend vers $+\infty$ », ou que « la limite de (u_n) lorsque n tend vers $+\infty$ est $+\infty$ » si les valeurs de u_n peuvent être aussi grandes que l'on veut lorsque n est assez grand. On le note ainsi :

$$\lim_{n\to+\infty}u_n=+\infty$$

Exemple	(s)	
LACITIPIC	(3)	

1.	Une mise en culture de bactéries voit leur nombre tripler toutes les heures. On note u_n le nombre de bactéries après n heures

2. On considère la suite (v_n) définie sur $\mathbb N$ par : $v_n=(-1,1)^n$. Le graphique ci-dessous la représente :

