Dérivation globale

À la fin de ce chapitre...

Je dois **connaître** :

- Les formules des fonctions dérivées de référence
- Les règles de calcul sur les fonctions dérivables
- Le lien entre dérivation et variations

Je dois **savoir-faire** :

- Utiliser les formules de dérivation
- Étudier les variations d'une fonction et déterminer ses extrema
- Résoudre des problèmes d'optimisation
- Établir une inégalité avec les variations d'une fonction

Définition 1 : Fonction dérivée

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

Si pour tout $a \in I$, f est dérivable en a, alors on dit que la fonction f est **dérivable sur I**.

La fonction qui, à tout nombre $x \in I$, associe le nombre f'(x) est appelée la **fonction dérivée** de f et est notée f'.

A) Dérivées des fonctions de référence

Propriété 1 : Fonctions dérivées des fonctions usuelles

Fonction	Intervalle de définition	Expression de f	Intervalle de dérivabilité	Fonction dérivée f^\prime
Constante	\mathbb{R}	f(x) = k avec k une constante réelle	\mathbb{R}	f'(x) = 0
Identité	R	f(x) = x	\mathbb{R}	f'(x) = 1
Affine	\mathbb{R}	f(x) = mx + p avec m et p réels	\mathbb{R}	f'(x) = m
Carré	R	$f(x) = x^2$	\mathbb{R}	f'(x) = 2x
Puissance	R	$f(x) = x^n$ avec $n \in \mathbb{N}^*$	\mathbb{R}	$f'(x) = nx^{n-1}$
Inverse	\mathbb{R}^*	$f(x) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$
Puissance inverse	R*	$f(x) = rac{1}{x^n}$ avec $n \in \mathbb{N}^*$	R*	$f'(x) = -\frac{n}{x^{n+1}}$
Racine carrée	[0; +∞[$f(x) = \sqrt{x}$	[0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$

Exemple(s): Dériver les fonctions suivantes :

- $\bullet \ f(x) = x^5: \dots$
- $\bullet \ g(x) = 4x 9:$
- $\bullet \ h(x) = \frac{1}{x^8} : \dots$

B) Opérations sur les fonctions dérivables

Dans toute cette partie, on notera :

- u et v deux fonctions **définies et dérivables** sur un même intervalle I;
- k une constante réelle.

Propriété 2 : Dérivée d'une somme de fonctions

La fonction somme définie sur I par f(x) = u(x) + v(x) est **dérivable sur** I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \mathbf{u}'(\mathbf{x}) + \mathbf{v}'(\mathbf{x})$. On note :

(u+v)'=u'+v'

Dériver la fonction $f(x) = x^2 + \frac{1}{x}$ qui est définie sur $I = R^*$:

Propriété 3 : Dérivée d'un produit d'une fonction par une constante réelle

La fonction ku définie sur I par $f(x) = k \times u(x)$ est **dérivable sur** I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \mathbf{k} \times \mathbf{u}'(\mathbf{x})$. On note :

$$(ku)' = ku'$$

Exemple(s): Dériver les fonctions suivantes :

- $\bullet \ f(x) = 3x^2:$
- $\bullet \ g(x) = 5\sqrt{x}:$

Propriété 4 : Dérivée du produit de deux fonctions

Exemple(s): Dériver la fonction $f(x) = 3x\sqrt{x}$ définie sur $[0; +\infty[$:

La fonction produit définie sur I par $f(x) = u(x) \times v(x)$ est **dérivable sur** I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \mathbf{u}'(\mathbf{x}) \times \mathbf{v}(\mathbf{x}) + \mathbf{u}(\mathbf{x}) \times \mathbf{v}'(\mathbf{x})$. On note :

$$(uv)' = u'v + uv'$$

<u>Demonstration</u> :	
Propriété 5 : Dérivée du quotient de deux	x fonctions (et inverse)
On suppose ici que v ne s'annule pas sur I .	
On suppose ici que v ne s'annule pas sur I .	
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$	$\frac{x}{x}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$.
On suppose ici que v ne s'annule pas sur I .	$\frac{x}{x}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$.
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$	
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
On suppose ici que v ne s'annule pas sur I . La fonction quotient définie sur I par $f(x)=\dfrac{u(x)}{v(x)}$. On note :	$\frac{(x)}{(x)}$ est dérivable sur I et pour tout x on a $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{u}'(\mathbf{x})\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{x})\mathbf{v}'(\mathbf{x})}{(\mathbf{v}(\mathbf{x}))^2}$. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Exemple(s) : Dériver la fonction $g(x) = \frac{2x^2 + x + 1}{x^2 - x - 1}$:
Propriété 6 : Dérivée de la composée avec une fonction affine
On considère un intervalle I et deux réels a et b . On note J l'intervalle des valeurs prises par $ax + b$ quand x décrit l'intervalle I .
Si la fonction g est dérivable sur J , alors la fonction f définie sur I par :
$f: x \mapsto g(ax+b)$
est dérivable sur I et on a pour tout $x \in I$: $\mathbf{f}'(\mathbf{x}) = \mathbf{a} \times \mathbf{g}'(\mathbf{a}\mathbf{x} + \mathbf{b})$
Exemple(s) : Dériver la fonction $f(x) = (-2x + 8)^5$:

C) Fonction dérivée et variations

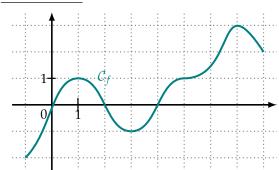
1. Variations

Propriété 7 : Signe de la dérivée et sens de variation de la fonction
Soit f une fonction définie et dérivable sur un intervalle I de $\mathbb R$. Alors :
• f est croissante sur I si et seulement si $\mathbf{f}'(\mathbf{x}) \geqslant 0$ pour tout $x \in I$;
• f est strictement croissante sur I si et seulement si $\mathbf{f}'(\mathbf{x}) > 0$ pour tout $x \in I$;
• f est décroissante sur I si et seulement si $\mathbf{f}'(\mathbf{x}) \leq 0$ pour tout $x \in I$;
 f est strictement décroissante sur I si et seulement si f'(x) < 0 pour tout x ∈ I;
f est strictement decroissance sur f is at sequence f if f is f is f in f is f in f is f in
• f est constante sur I si et seulement si $\mathbf{f}'(\mathbf{x}) = 0$ pour tout $x \in I$.
Exemple(s) : Quelles sont les variations de la fonction $f(x) = -2x + 8$ définie sur \mathbb{R} ?
Exemple(s) : Quelles sont les variations de la fonction $g(x) = x^2 + 6x - 1$ définie sur \mathbb{R} ?
$oxed{M\'ethode\ 1}$: Étudier les variations d'une fonction f
Pour étudier les variations d'une fonction f , on se ramène généralement à étudier le signe de sa dérivée f' :
1. On calcule l'expression de la fonction dérivée f' ;
2. On étudie le signe de f' ;
3. On trace le tableau de variations de f avec les lignes suivantes :
• Valeurs de x;
• Signe de $f'(x)$;
• Variations de f.
4. On calcule les images de f aux bornes de I si possible, ainsi qu'aux changements de variation.
Example(s) : $f(x) = \frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right)}{1} \right) \right)}{1} \right)} \right) \right)} \right)} \right)} \right)} \right)}}} \right) $
Exemple(s) : Étudier les variations de la fonction $h(x) = 2x^3 - 3x^2 - 12x + 6$ définie sur $I = [-2; 4]$:

2. Extrema locaux

<u>Définition 2</u>: Extrema d'une fonction

- ullet Le réel M est le **maximum** de f sur I si :
 - Il existe un réel $a \in I$ tel que f(a) = M;
 - Pour tout $x \in I$, on a $f(x) \leq M$.


On dit alors que le le maximum de f sur I est M, atteint en a.

- ullet Le réel m est le **minimum** de f sur I si :
 - Il existe un réel $a \in I$ tel que f(a) = m;
 - Pour tout $x \in I$, on a $f(x) \ge m$.

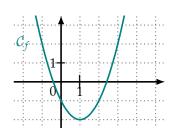
On dit alors que le le minimum de f sur I est m, atteint en a.

- ullet On appelle **extremum** de f sur I le maximum ou le minimum de f sur I.
- On dit que α est un **extremum local** de f sur l'intervalle I s'il existe un intervalle ouvert $J \subset I$ tes que α soit un extremum de f sur ce sous-intervalle J.

Exemple(s):

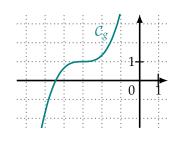
Extremum local	Atteint en	Voisinage

Propriété 8 : Extremum local et dérivée

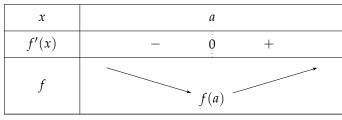

Soit f une fonction définie et dérivable sur un intervalle réel I et a un réel de I qui n'est pas une borne de I.

.....

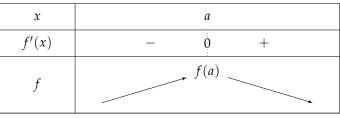
Si f admet un extremum local en a, alors f'(a) = 0.


Exemple(s): Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 2x - 1$:

Exemple(s): Soit f la fonction définie sur \mathbb{R} par $g(x) = \frac{1}{3}x^3 + 3x^2 + 9x + 10$:



Propriété 9 : Dérivée et extremum local


Soit f une fonction définie et dérivable sur un intervalle réel I et a un réel de I qui n'est pas une borne de I.

Si f' s'annule en a en changeant de signe, alors f admet un extremum local en a.

Deux cas sont possibles :

f(a) est un minimum

f(a) est un maximum

D) Applications

1. Interprétation des contraintes :

Méthode 2 : Résoudre un problème d'optimisation

Énoncé:

Un vase en verre a la forme d'un parallélépipède rectangle de hauteur 16 cm. Ce vase à une contenance de 900 cm³. Quelles dimensions doit-on donner à ce vase pour qu'il ait une surface en verre minimale? Justifier.

Н	G	
	$_{F}$	
E	\neg	
	<i>c</i>	
,,,		
A	В	

Étude des variations et des extrema éventuels de la fonction ét	ablie :	
On pense à préciser le domaine de définition de la fonction, pu	is on la dérive pour é	tudier ses variations et étudier l'existence
d'un extremum.		

3. Retour au probleme et conclusion :
On exploite maintenant les variations obtenues pour répondre à la question.
<u>Méthode 3</u> : Établir une inégalité
<u>Énoncé</u> :
Soit f la fonction définie sur $I=[-13\ ;\ 2]$ par $f(x)=\frac{-2x^2+x+1}{x^2+6}$.
Donner un encadrement de f si $1 \leqslant x \leqslant 2$.