Équations et inéquations

À la fin de ce chapitre...

Je dois connaître :

- Le vocabulaire des (in)équations.
- Les règles de calculs pour résoudre une (in)équation.
- La méthode pour résoudre une inéquation-produit (ou inéquation-quotient).

Je dois savoir-faire:

- Résoudre une équation du premier degré.
- Résoudre une équation produit-nul (ou quotient-nul).
- Résoudre une inéquation du premier degré.
- Résoudre une inéquation-produit (ou inéquationquotient) à l'aide d'un tableau de signes.

A) Rappels sur les équations

1. Vocabulaire

Définition 1 : Équation

Une **équation** d'**inconnue** x est une égalité dans laquelle intervient un nombre dont on ne connaît pas la valeur (et qu'on note donc x).

Définition 2: Résoudre une équation

Résoudre dans un ensemble \mathcal{E} une équation d'inconnue x, c'est déterminer toutes les valeurs que peut prendre x dans \mathcal{E} telles que l'égalité soit vraie. Ces valeurs sont appelées solutions de l'équation.

On dit que deux équations sont équivalentes lorsqu'elles ont les mêmes solutions.

Exemple(s):

•	L'équation $x^2 + x - 2 = 0$ (<i>E</i>) :
•	L'équation $2x + 3 = -x + 6$ (E') admet 1 comme unique solution (on reverra après pourquoi).

2. Équations du premier degré

Propriété 1 : Calculer avec les équations

On peut appliquer les manipulations suivantes à une équation pour produire une équation équivalente :

• Les équations (E) et (E')

- Ajouter (ou soustraire) un même nombre aux deux membres de l'équation.
- Multiplier (ou diviser) par un même nombre les deux membres de l'équation.
- Simplifier, développer, factoriser, réduire l'un des deux membres de l'équation.

Exemple(s):	Reprenons l'équation (E') de tout à l'heure : $2x + 3 = -x + 6$

Méthode 1 : Résoudre une équation du premier degré

En utilisant les propriétés d'équivalences vues ci-dessues, on transforme petit à petit l'équation initiale en une équation équivalente jusqu'à arriver à la forme x=k en isolant l'inconnue dans un membre de l'équation (généralement à gauche mais parfois il est plus pratique de l'isoler à droite, et en mathématiques, x=k ou k=x sont équivalentes). Pour cela :

- 1. On « met » tous les termes en x dans un membre de l'équation ;
- 2. On « met » toutes les constantes (termes sans x) dans l'autre membre de l'équation ;
- 3. Il faut en général finir par diviser par la constante en facteur de x.

Exemple(s):

3x + 4 = 10	5y - 3 = 17
$7 + \frac{x}{3} = 9$	$\frac{2x-5}{4}=1,5$

3. Équations produit-nul (ou quotient-nul)

La résolution de certaines équations plus complexes (par exemple équations du second degré) peut parfois se ramener à celle d'équations du premier degré, en regroupant tous les termes dans un même membre et en essayant de factoriser ce membre. On obtient alors une **équation produit-nul** ou une **équation quotient-nul**.

Propriété 2 : Équation produit-nul

Un produit de deux réels est nul si et seulement si au moins l'un de ses deux facteurs est nul. Autrement dit :

$$A(x) \times B(x) = 0$$
 \Leftrightarrow $A(x) = 0$ ou $B(x) = 0$

Exemple(s):

(x-2)(x+5) = 0	(x+4)(2x-3) = 0

Propriété 3 : Équation quotient-nul

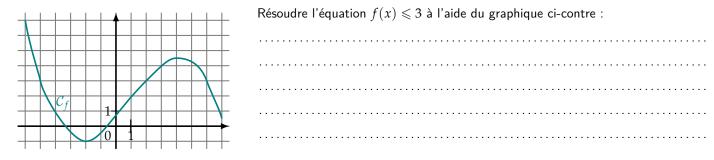
Un quotient de deux réels est nul si et seulement si son numérateur est nul et son dénominateur est non nul. Autrement dit :

$$\frac{A(x)}{B(x)} = 0$$
 \Leftrightarrow $A(x) = 0$ $\underline{\text{et}}$ $B(x) \neq 0$

Les valeurs de x telles que B(x) = 0 sont appelées valeurs interdites du quotient.

B) Inéquations

Définition 3: Inéquation


Une **inéquation** d'**inconnue** x est une inégalité dans laquelle intervient une inconnue x.

À la différence des équations, la solution d'une inéquation est plus généralement un intervalle (ou une union d'intervalles).

On dit que deux inéquations sont équivalentes lorsqu'elles ont le même ensemble de solutions.

Exemple(s):

On a vu au Chapitre 4 les résolutions graphiques d'inéquations :

On va désormais chercher à résoudre les inéquations de manière algébrique (par le calcul).

1. Règles de résolution des inéquations

Propriété 4 : Calculer avec les inéquations

On peut appliquer les manipulations suivantes à une inéquation pour produire une inéquation équivalente (similaires à celles pour les équations) :

- Ajouter (ou soustraire) un même nombre aux deux membres de l'inéquation.
- Multiplier (ou diviser) par un même nombre les deux membres de l'inéquation MAIS ATTENTION!
 - o Si on mutliplie (ou divise) par un nombre négatif non nul : il faut changer le sens de l'inégalité!
 - Si on mutliplie (ou divise) par un nombre positif ou nul : on ne change pas le sens de l'inégalité.
- Simplifier, développer, factoriser, réduire l'un des deux membres de l'équation.

Méthode 2 : Résoudre une inéquation du premier degré

En utilisant les propriétés d'équivalences vues ci-dessues, on transforme petit à petit l'inéquation initiale en une inéquation équivalente jusqu'à arriver à une des formes suivantes :

x < k

 $x \leq k$

r > k

 $x \geqslant k$

On peut également avoir une combinaison de ces formes (par exemple $a < x \le b$).

Exemple(s) : Résoudre l'inéquation suivante : $3x < 7x + 12$				
	$3\lambda < 7\lambda + 12$			
2. Inéquation-produit ou inéquation-que	otient			
Méthode 3 : Signe d'un produit et inéquation	n-produit			
Pour étudier le signe d'un produit $A(x) \times B(x) \times \ldots$ d'un produit à l'aide d'un tableau de signes bilan.	., on détermine le signe de chaque facteur et on applique la règle des signes			
Exemple(s): Résoudre l'inéquation-produit suiv	rante :			
	(x-6)(-2x+3) > 0			
<u>Méthode 4</u> : Signe d'un quotient et inéquation	on-quotient			
Pour étudier le signe du quotient $\frac{A(x)}{B(x)}$ on détermine	le signe du numérateur et du dénominateur et on dresse un tableau de signe.			
Attention, les zéros du dénominateur sont des valeur	s interdites!			
Exemple(s):				
Résoudre l'inéquation $\frac{-2x+4}{x-1} \leqslant 0$:				