Trigonométrie

À la fin de ce chapitre...

Je dois **connaître** :

- Le cercle trigonométrique
- Les mesures d'angles en radian
- Les fonctions sinus et cosinus et leurs propriétés
- Les valeurs remarquables des cosinus et sinus

Je dois savoir-faire :

- Placer un point sur le cercle trigonométrique
- Déterminer un sinus ou un cosinus d'une valeur remarquable
- Faire le lien entre le cercle trigonométrique et les fonctions sinus et cosinus
- Utiliser les propriétés des fonctions sinus et cosinus

A) Enroulement sur le cercle trigonométrique

On se place dans un repère **orthonormé** (O; I; J).

Définition 1 : Cercle trigonométrique

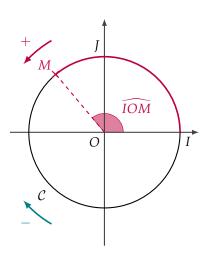
Le cercle trigonométrique \mathcal{C} est le cercle de centre O, de rayon 1 et orienté dans le sens direct, noté +, c'est-à-dire le sens inverse des aiguilles d'une montre.

Remarques:

- Il existe deux sens de parcours pour un point M sur $\mathcal C$:
 - o le sens direct (noté +) ou sens trigonométrique;
 - \circ le sens indirect (noté -), sens des aiguilles d'une montre.
- Le **périmètre** de \mathcal{C} vaut $2\pi \times 1 = 2\pi$
- La longueur de l'arc de cercle \widehat{IM} est proportionnelle à l'angle \widehat{IOM} en degré qui intercepte cet arc :

Longueur de l'arc	2π	\widehat{IM}
Angle \widehat{IOM}	360°	ÎOM

$$\widehat{IM} = \frac{\pi}{180} \times \widehat{IOM}$$



Propriété 1 : Enroulement de la droite des réels sur le cercle trigonométrique

On considère le cercle trigonométrique C et sa tangente T au point I, qui représente la **droite** des réels.

On imagine que l'on enroule cette droite autour du cercle trigonométrique.

À tout réel x, on associe donc le point N(1,x) de T. Par enroulement, ce point N vient se superposer à un unique point M du cercle trigonométrique. On dit que ce point M est associé au réel x, ou encore que M est l'**image** de x sur le cercle C.

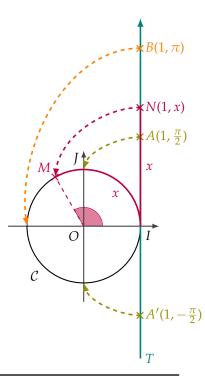
Remarques:

- Lorsque x est positif, on parcourt le cercle dans le sens trigonométrique , lorsque x est négatif, on le parcourt dans le sens indirect .
- Chaque nombre réel x est associé à un unique point M du cercle trigonométrique, **par contre** chaque point du cercle est l'image d'une infinité de réels x, espacés les uns des autres de 2π !

Plus précisément, tous les réels de la forme $x+2k\pi$ ont pour image le **même point** M, avec $k\in\mathbb{Z}$, où k représente le nombre de « tours » supplémentaires.

Soit M un point du cercle trigonométrique \mathcal{C} , associé au réel x.

On dit que x est une **mesure en radian** de l'angle au centre IOM, orienté de I vers M.



Propriété 2 :

Si $x \in [0; \pi[$, alors la mesure en radians de l'angle au centre \widehat{IOM} est **proportionnelle** à sa mesure en degrés :

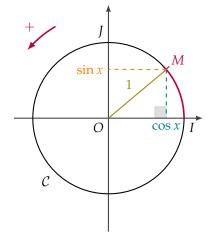
Mesure en radians	π	x
Mesure en degrés	180°	ÎOM

B) Sinus et cosinus d'un nombre réel

Définition 3 : Lien entre cercle trigonométrique et sinus/cosinus

Soit x un réel et M son point associé sur C.

- L'abscisse de point M dans le repère orthonormé (O; I; J) est le cosinus du réel x, noté $\cos x$;
- L' ordonnée de point M dans le repère orthonormé (O; I; J) est le sinus du réel x, noté $\sin x$;
- Ainsi, les coordonnées du point M sont $(\cos x ; \sin x)$.



Propriété 3 :

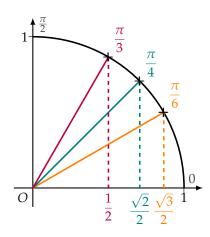
Pour tout réel x on a :

- Propriété d'encadrement : $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$
- Relation fondamentale : $\cos^2 x + \sin^2 x = 1$

Remarque : Cette définition est bien cohérente avec celle vue au collège si on considère le triangle rectangle tracé ci-dessus.

Propriété 4 : Valeurs remarquables - À CONNAÎTRE PAR CŒUR!

Angle \widehat{IOM} en degrés	0 °	30°	45°	60°	90°
Réel $x \in \left[0 \; ; \; \dfrac{\pi}{2} \right]$ associé (en radian)	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$rac{\pi}{2}$
$\cos \widehat{IOM} = \cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \widehat{IOM} = \sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1



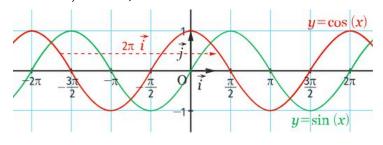
C) Fonctions sinus et cosinus

Définition 4 : Fonctions trigonométriques

- La fonction **cosinus**, notée cos, est définie sur \mathbb{R} par $x \mapsto \cos x$.
- La fonction **sinus**, notée sin, est définie sur \mathbb{R} par $x \mapsto \sin x$.

Propriété 5 : Représentations graphiques

Le parcours du point $M(\cos x ; \sin x)$ sur le cercle trigonométrique permet de construire point par point les courbes représentatives de cos et de sin (voir animation GeoGebra). On dit que les courbes sont des **sinusoïdes**.



Propriété 6 : Parité

- La fonction **cosinus** est **paire** : $\forall x \in \mathbb{R}$, $\cos(-x) = \cos(x)$
- La fonction sinus est impaire : $\forall x \in \mathbb{R}, \sin(-x) = -\sin(x)$

En effet, les points associés à x et à -x sur le cercle trigonométrique sont symétriques par rapport à l'axe des abscisses.

Ils ont donc des abscisses égales et des ordonnées opposées .

Propriété 7 : Périodicité

Les fonctions sinus et cosinus sont **périodiques** de période 2π . Ainsi, pour tout réel x on a :

$$cos(x + 2\pi) = cos x$$
 et $sin(x + 2\pi) = sin x$

En effet, les points du cercle trigonométrique associés à x et à $x+2\pi$ sont confondus (voir remarques de la Propriété 1).

Propriété 8 : Dérivation

- $\bullet \ (\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$

Moyen mnémotechnique : Quand on dérive on « tombe » dans le sens indirect :

