

# Coordonnées de vecteurs

À la fin de ce chapitre...

#### Je dois **connaître** :

- Les définitions de repère du plan et coordonnées d'un vecteur
- La norme d'un vecteur d'après ses coordonnées
- Les propriétés des vecteurs avec les coordonnées

#### Je dois savoir-faire :

- Lire les coordonnées d'un vecteur et tracer un vecteur de coordonnées données dans un repère
- Calculer les coordonnées d'un vecteur d'après les coordonnées de ses extrémités
- Calculer la norme d'un vecteur avec ses coordonnées
- Appliquer les opérations sur un vecteur
- Résoudre des problèmes de géométrie avec des vecteurs

# A) Coordonnées d'un vecteur

#### Définition 1 : Repère du plan

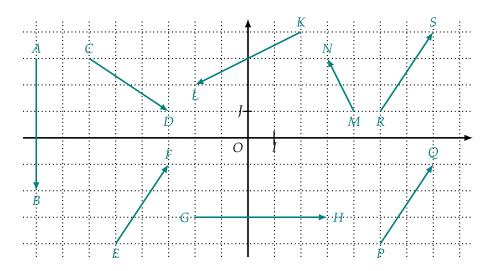
Un **repère du plan** est défini par trois points O, I et J non alignés. On dit que le repère (O;I;J) est **orthonormé** si OI = OJ et les droites (OI) et (OJ) sont perpendiculaires.

Le point O est l'origine du repère, (OI) est l'axe des abscisses et (OJ) est l'axe des ordonnées. Chaque point du plan peut être représenté par ses coordonnées dans le repère.

# Définition 2 : Coordonnées d'un vecteur

Soit  $\vec{u}$  un vecteur dans un repère (O; I; J) et soient x et y deux réels tels que l'on puisse écrire  $\vec{u} = x\overrightarrow{OI} + y\overrightarrow{OJ}$ . On peut alors noter  $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$  et dire que le vecteur  $\vec{u}$  a pour **coordonnées** x et y dans la **base**  $(\overrightarrow{OI}; \overrightarrow{OJ})$ .

**Exemple(s):** Le repère  $(O;\overrightarrow{OI};\overrightarrow{OJ})$  ci-dessous est orthonormé :



| Vecteur     | $\overrightarrow{CD}$                   | $\overrightarrow{AB}$                   | ĒĖ             | $\overrightarrow{GH}$                  | $\overrightarrow{KL}$                    | $\overrightarrow{MN}$                 | $\overrightarrow{PQ}$ | $\overrightarrow{RS}$ |
|-------------|-----------------------------------------|-----------------------------------------|----------------|----------------------------------------|------------------------------------------|---------------------------------------|-----------------------|-----------------------|
| Coordonnées | $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ | $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$ | $\binom{2}{3}$ | $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$ | $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$ | $\begin{pmatrix} -1\\2 \end{pmatrix}$ | $\binom{2}{3}$        | $\binom{2}{3}$        |

## Propriété 1 : Égalité de vecteurs

Soient  $(O; \overrightarrow{OI}; \overrightarrow{OJ})$  un repère, et  $\overrightarrow{u} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$  et  $\overrightarrow{v} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$  deux vecteurs.

 $\vec{u}$  et  $\vec{v}$  sont **égaux** si et seulement si leurs coordonnées sont égales deux à deux. Autrement dit :

$$\vec{u} = \vec{v} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} x_1 = x_2 \\ y_1 = y_2 \end{array} \right.$$

**Exemple(s):** Dans l'exemple précédent, quels sont les vecteurs égaux?

$$\overrightarrow{EF} = \overrightarrow{PO} = \overrightarrow{RS}$$

## Propriété 2 : Calculer les coordonnées d'un vecteur à partir de ses extrémités

Soient  $A(x_A; y_A)$  et  $B(x_B; y_B)$  deux points d'un repère. Le vecteur  $\overrightarrow{AB}$  a pour coordonnées :

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$

# Propriété 3 : Coordonnées par une translation

Soit  $M(x_M; y_M)$  un point et  $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$  un vecteur du plan.

Si le point N est l'image du point M par la translation de vecteur  $\vec{u}$ , alors il a pour coordonnées :

$$N(x_M + x ; y_M + y)$$

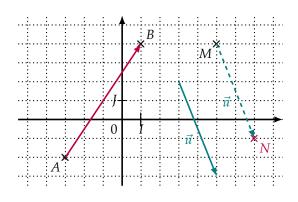
# Exemple(s):

1. Soient A(-3, -2) et B(1, 4). Quelles sont les coordonnées du vecteur  $\overrightarrow{AB}$ ? Vérifier sur le graphique ci-contre :

$$\overrightarrow{AB} = \begin{pmatrix} 1 - (-3) \\ 4 - (-2) \end{pmatrix} = \begin{pmatrix} 1+3 \\ 4+2 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

2. Soit  $N(x_N;y_N)$  l'image du point M(5;4) par la translation de vecteur  $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ . Calculer les coordonnées du point N :

$$(x_N; y_N) = (x_M + x_{\vec{u}}; y_M + y_{\vec{u}}) = (5+2; 4+(-5)) = (7; -1)$$



#### Propriété 4: Norme d'un vecteur

Soit  $(O; \overrightarrow{OI}; \overrightarrow{OJ})$  un repère **orthonormé** et  $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$  un vecteur dont les coordonnées sont exprimées dans la base  $(\overrightarrow{OI}; \overrightarrow{OJ})$ . La norme de  $\overrightarrow{u}$  est :

$$\|\vec{u}\| = \sqrt{x^2 + y^2}$$

# **Exemple(s):** En reprenant les exemples de la fin de la page 1 :

| Vecteur     | $\overrightarrow{CD}$                            | $\overrightarrow{GH}$              | <del></del> <del>K</del> L                           | $\overrightarrow{MN}$                            |  |
|-------------|--------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------------|--|
| Coordonnées | $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$          | $\binom{5}{0}$                     | $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$             | $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$          |  |
| Norme       | $\sqrt{3^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}$ | $\sqrt{5^2 + 0^2} = \sqrt{25} = 5$ | $\sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20}$ | $ \sqrt{(-1)^2 + 2^2} =  \sqrt{1+4} = \sqrt{5} $ |  |

# B) Opérations sur les vecteurs

## Propriété 5 : Somme de vecteurs

Soient  $\vec{u} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$  et  $\vec{v} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ . Alors le vecteur somme de  $\vec{u}$  et  $\vec{v}$  a pour coordonnées  $\vec{u} + \vec{v} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ .

 $\underline{\textbf{Exemple(s)}} \; : \quad \text{Soient } \; \overrightarrow{CD} \begin{pmatrix} 3 \\ -2 \end{pmatrix} \; \text{et } \; \overrightarrow{KL} \begin{pmatrix} 4 \\ -2 \end{pmatrix} . \; \text{Alors le vecteur } \; \overrightarrow{w} = \overrightarrow{CD} + \overrightarrow{KL} \; \text{a pour coordonnées} \; :$ 

$$\vec{w} = \overrightarrow{CD} + \overrightarrow{KL} = \begin{pmatrix} 3+4 \\ -2+(-2) \end{pmatrix} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$$

## Propriété 6 : Produit d'un vecteur par un réel

Soit  $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$  et  $k \in \mathbb{R}$ . Alors le vecteur  $k\vec{u}$  a pour coordonnées  $k\vec{u} = \begin{pmatrix} kx \\ ky \end{pmatrix}$ .

**Exemple(s)**: Soient  $\overrightarrow{CD} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$  et  $k = -\frac{1}{6}$ . Alors le vecteur  $\overrightarrow{w} = k\overrightarrow{CD}$  a pour coordonnées :

$$\vec{w} = k\vec{C}\vec{D} = -\frac{1}{6} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} \times 3 \\ -\frac{1}{6} \times (-2) \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$$

## Propriété 7 : Colinéarité

Soient  $\vec{u} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$  et  $\vec{v} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ . Alors  $\vec{u}$  et  $\vec{v}$  sont **colinéaire** si et seulement si  $x_1y_2 - y_1x_2 = 0$ .

**Exemple(s)**: Soient les vecteurs  $\vec{u} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ ,  $\vec{v} \begin{pmatrix} 9 \\ 15 \end{pmatrix}$  et  $\vec{w} \begin{pmatrix} 10 \\ 20 \end{pmatrix}$  :

- $3 \times 15 5 \times 9 = 45 45 = 0$  donc  $\vec{u}$  et  $\vec{v}$  sont colinéaires .
- $3 \times 20 5 \times 10 = 60 50 = 10 \neq 0$  donc  $\vec{u}$  et  $\vec{w}$  sont non colinéaires.

#### **Démonstration:**

 $\vec{u}$  et  $\vec{v}$  colinéaires  $\Leftrightarrow$  il existe  $k \in \mathbb{R}$  tel que  $\vec{u} = k\vec{v}$ .

Ainsi, on a 
$$\begin{cases} x_2 = kx_1 \\ y_2 = ky_1 \end{cases}$$

On a alors:

$$x_1y_2 - y_1x_2 = x_1 \times ky_1 - y_1 \times kx_1 = kx_1y_1 - kx_1y_1 = 0$$

# C) Application à la géométrie

**Rappel**: Soient A, B, C et D quatre points du plan. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs  $\overrightarrow{AB}$  et  $\overrightarrow{CD}$  sont colinéaires.

#### Propriété 8 : Parallélisme

Soient  $A(x_A; y_A)$ ,  $B(x_B; y_B)$ ,  $C(x_C; y_C)$  et  $D(x_D; y_D)$ . Les droites (AB) et (CD) sont **parallèles** si et seulement si  $(x_B - x_A)(y_D - y_C) - (x_D - x_C)(y_B - y_A) = 0$ .

**Rappel**: Soient A, B et C trois points du plan. A, B et C sont alignés si et seulement si les vecteurs  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  sont colinéaires.

#### Propriété 9 : Alignement

Soient  $A(x_A; y_A)$ ,  $B(x_B; y_B)$  et  $C(x_C; y_C)$ .

Les points A, B et C sont alignés si et seulement si  $(x_B - x_A)(y_C - y_A) - (x_C - x_A)(y_B - y_A) = 0$ .

## Définition 3 : Équation cartésienne de droite

Soit (d) une droite du plan.

On peut alors trouver trois réels a, b et c avec  $(a,b) \neq (0,0)$  (c'est-à-dire que a et b ne peuvent pas valoir 0 *en même temps*) tels que :

$$M(x;y) \in (d)$$
  $\Leftrightarrow$   $ax + by + c = 0$ 

On dit alors que ax + by + c = 0 est une **équation cartésienne** de la droite (d).

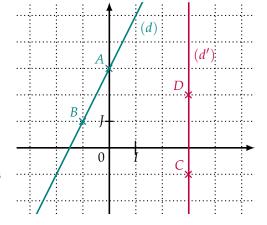
# Exemple(s):

• Soit (d) la droite d'équation -2x + y - 3 = 0:

Par exemple si 
$$x=0$$
 et  $y=3$  alors on a bien :  $-2x+y-3=-2\times 0+3-3=0$  Donc le point  $A(0,3)\in (d)$ .

De même si x=-1 alors il faut que y vérifie :  $-2\times(-1)+y-3=0 \quad \Leftrightarrow \quad 2+y-3=0 \quad \Leftrightarrow \quad y-1=0 \quad \Leftrightarrow \quad y=1$ 

Donc le point  $B(-1,1) \in (d)$ .



• Soit (d') la droite d'équation 2x + 6 = 0:

On doit forcément avoir x=3 et y quelconque. Donc par exemple, les points suivants appartiennent à (d') :

$$C(3,-1)$$
 et  $D(3,2)$ 

#### Définition 4 : Vecteur directeur

Soient (d) une droite et A et B deux points du plan.

Si  $A \in (d)$  et  $B \in (d)$ , alors on dit que  $\overrightarrow{AB}$  est un **vecteur directeur** de la droite (d).

#### Propriété 10 : Vecteur directeur et colinéarité

Soit (d) une droite du plan et  $\vec{u}$  et  $\vec{v}$  deux vecteurs.

 $\vec{u}$  et  $\vec{v}$  sont deux vecteurs directeurs de (d) si et seulement si  $\vec{u}$  et  $\vec{v}$  sont colinéaires.

#### Propriété 11 : Vecteur directeur et équation cartésienne

Soit (d) une droite du plan ayant pour équation cartésienne ax + by + c = 0.

Alors  $\vec{u} = \begin{pmatrix} -b \\ a \end{pmatrix}$  est un vecteur directeur de la droite (d).

**Exemple(s):** Donner un vecteur directeur de chacune des droites de l'exemple précédent :

- $\bullet \ \ \mathsf{Droite} \ (d) : \vec{u} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \ \mathsf{qui} \ \mathsf{est} \ \mathsf{colin\'eaire} \ \mathsf{au} \ \mathsf{vecteur} \ \overrightarrow{BA} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ \mathsf{car} \ \overrightarrow{BA} = (-1) \times \vec{u}$
- Droite (d') :  $\vec{v} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$  qui est colinéire au vecteur  $\overrightarrow{CD} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$  car  $\overrightarrow{CD} = \frac{3}{2} \times \vec{v}$

#### Propriété 12 : Parallélisme

Soient (d) et (d') deux droites du plan,  $\vec{u}$  est un vecteur directeur de (d) et  $\vec{v}$  un vecteur directeur de (d'). (d) et (d') sont **parallèles** si et seulement si  $\vec{u}$  et  $\vec{v}$  sont **colinéaires**.

# Exemple(s):

 $\vec{w} = -2\vec{u}$  donc (d) et (d') sont parallèles. Par contre (d') n'est pas parallèle aux deux autres droites.